Skip to main content
Log in

Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids are attractive alternatives for the current heat transfer fluids due to their remarkably higher thermal conductivity which leads to the improved thermal performance. Nanofluids are applicable in porous media for improving their heat transfer. Proposing accurate models for forecasting this feature of nanofluids can facilitate and accelerate the design and modeling of nanofluids’ thermal mediums with porous structure. In the present study, three methods including MARS, artificial neural network (ANN) with Levenberg–Marquardt for training and GMDH are employed for thermal conductivity of the nanofluids containing ZnO particles. The confidence of the models is compared according to various criteria. It is observed that the most accurate model is obtained by using ANN with Levenberg–Marquardt followed by GMDH and MARS. R2 of the mentioned models are 0.9987, 0.9980 and 0.9879, respectively. Finally, sensitivity analysis is performed to find the importance of the input variables and it is concluded that the thermal conductivity of the base fluids has the highest importance followed by volume fraction of solid phase, size of particles and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135:1611–5. https://doi.org/10.1007/s10973-018-7718-5.

    Article  CAS  Google Scholar 

  2. Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. Int Commun Heat Mass Transf. 2019;109:104367. https://doi.org/10.1016/j.icheatmasstransfer.2019.104367.

    Article  CAS  Google Scholar 

  3. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267–87. https://doi.org/10.1007/s10973-018-7945-9.

    Article  CAS  Google Scholar 

  4. Miri Joibary SM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08991-2.

    Article  Google Scholar 

  5. Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transf Eng. 2017;38:853–66. https://doi.org/10.1080/01457632.2016.1211916.

    Article  CAS  Google Scholar 

  6. Mahdi RA, Mohammed HA, Munisamy KM, Saeid NH. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew Sustain Energy Rev. 2015;41:715–34. https://doi.org/10.1016/j.rser.2014.08.040.

    Article  CAS  Google Scholar 

  7. Bondarenko DS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection heat transfer of a nanofluid in a lid-driven enclosure with two adherent porous blocks. J Therm Anal Calorim. 2019;135:1095–105. https://doi.org/10.1007/s10973-018-7455-9.

    Article  CAS  Google Scholar 

  8. Safaei MR, Mahian O, Garoosi F, Hooman K, Karimipour A, Kazi SN, et al. Investigation of micro- and nanosized particle erosion in a 90° pipe bend using a two-phase discrete phase model. Sci World J. 2014. https://doi.org/10.1155/2014/740578.

    Article  Google Scholar 

  9. Siavashi M, Talesh Bahrami HR, Aminian E, Saffari H. Numerical analysis on forced convection enhancement in an annulus using porous ribs and nanoparticle addition to base fluid. J Cent South Univ. 2019;26:1089–98. https://doi.org/10.1007/s11771-019-4073-z.

    Article  CAS  Google Scholar 

  10. Behnampour A, Akbari OA, Safaei MR, Ghavami M, Marzban A, Sheikh Shabani GA, et al. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Phys E Low-Dimens Syst Nanostruct. 2017;91:15–31. https://doi.org/10.1016/j.physe.2017.04.006.

    Article  CAS  Google Scholar 

  11. Said Z, Rahman SMA, Assad MEH, Alami AH. Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17. https://doi.org/10.1016/J.SETA.2018.12.020.

    Article  Google Scholar 

  12. Ehyaei MA, Ahmadi A, Assad MEH, Hachicha AA, Said Z. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Sol Energy. 2019;187:175–84. https://doi.org/10.1016/J.SOLENER.2019.05.046.

    Article  CAS  Google Scholar 

  13. Said Z, Assad MEH, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, et al. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94. https://doi.org/10.1016/J.RSER.2019.05.052.

    Article  CAS  Google Scholar 

  14. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Safdari Shadloo M. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows: application to forced convection heat transfer over a horizontal cylinder. J Therm Anal Calorim. 2019;135:1733–41. https://doi.org/10.1007/s10973-018-7022-4.

    Article  CAS  Google Scholar 

  15. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, et al. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8:168781401667356. https://doi.org/10.1177/1687814016673569.

    Article  CAS  Google Scholar 

  16. Ramezanizadeh M, Alhuyi Nazari M, Hossein Ahmadi M, Chen L. A review on the approaches applied for cooling fuel cells. Int J Heat Mass Transf. 2019;139:517–25. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.05.032.

    Article  CAS  Google Scholar 

  17. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018. https://doi.org/10.1016/j.rser.2018.04.042.

    Article  Google Scholar 

  18. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Chau K. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comput Fluid Mech. 2019;13:40–7. https://doi.org/10.1080/19942060.2018.1518272.

    Article  Google Scholar 

  19. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  20. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65. https://doi.org/10.1016/j.applthermaleng.2017.01.068.

    Article  CAS  Google Scholar 

  21. Ghalandari M, Mirzadeh Koohshahi E, Mohamadian F, Shamshirband S, Chau KW. Numerical simulation of nanofluid flow inside a root canal. Eng Appl Comput Fluid Mech. 2019;13:254–64. https://doi.org/10.1080/19942060.2019.1578696.

    Article  Google Scholar 

  22. Siavashi M, Miri Joibary SM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2019;135:1595–610. https://doi.org/10.1007/s10973-018-7829-z.

    Article  CAS  Google Scholar 

  23. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A Appl. 2014;66:1321–40. https://doi.org/10.1080/10407782.2014.916101.

    Article  CAS  Google Scholar 

  24. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47. https://doi.org/10.1016/J.ENERGY.2017.04.077.

    Article  Google Scholar 

  25. Qin Y, Hiller JE. Water availability near the surface dominates the evaporation of pervious concrete. Constr Build Mater. 2016;111:77–84. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.063.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Hajmohammad MH, Sina N, Afrand M. Optimization of thermophysical properties of Al2O3/water-EG (80:20) nanofluids by NSGA-II. Phys E Low-Dimens Syst Nanostruct. 2018;103:264–72. https://doi.org/10.1016/J.PHYSE.2018.05.031.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Phys E Low-Dimens Syst Nanostruct. 2018;95:71–7. https://doi.org/10.1016/J.PHYSE.2017.08.017.

    Article  CAS  Google Scholar 

  28. Aberoumand S, Jafarimoghaddam A. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J Taiwan Inst Chem Eng. 2017;71:315–22. https://doi.org/10.1016/J.JTICE.2016.12.035.

    Article  CAS  Google Scholar 

  29. Bagheri H, Ahmadi Nadooshan A. The effects of hybrid nano-powder of zinc oxide and multi walled carbon nanotubes on the thermal conductivity of an antifreeze. Phys E Low-Dimens Syst Nanostruct. 2018;103:361–6. https://doi.org/10.1016/j.physe.2018.06.017.

    Article  CAS  Google Scholar 

  30. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8. https://doi.org/10.1007/s10973-015-4565-5.

    Article  CAS  Google Scholar 

  31. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.05.014.

    Article  CAS  Google Scholar 

  32. Taherialekouhi R, Rasouli S, Khosravi A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int J Heat Mass Transf. 2019;145:118751. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.118751.

    Article  CAS  Google Scholar 

  33. de Oliveira LR, Ribeiro SRFL, Reis MHM, Cardoso VL, Bandarra Filho EP. Experimental study on the thermal conductivity and viscosity of ethylene glycol-based nanofluid containing diamond-silver hybrid material. Diam Relat Mater. 2019;96:216–30. https://doi.org/10.1016/j.diamond.2019.05.004.

    Article  CAS  Google Scholar 

  34. Mirbagheri MH, Akbari M, Mehmandoust B. Proposing a new experimental correlation for thermal conductivity of nanofluids containing of functionalized multiwalled carbon nanotubes suspended in a binary base fluid. Int Commun Heat Mass Transf. 2018;98:216–22. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2018.09.007.

    Article  CAS  Google Scholar 

  35. Ahmadi M-A, Ahmadi MH, Fahim Alavi M, Nazemzadegan MR, Ghasempour R, Shamshirband S. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/J.JTICE.2018.06.003.

    Article  Google Scholar 

  36. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys E Low-Dimens Syst Nanostruct. 2017;85:90–6. https://doi.org/10.1016/j.physe.2016.08.020.

    Article  CAS  Google Scholar 

  37. Ahmadi MH, Mirlohi A, Alhuyi Nazari M, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–8. https://doi.org/10.1016/J.MOLLIQ.2018.05.124.

    Article  CAS  Google Scholar 

  38. Karimipour A, Bagherzadeh SA, Goodarzi M, Alnaqi AA, Bahiraei M, Safaei MR, et al. Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: evaluation of the thermophysical properties beside sensitivity analysis and EANN. Int J Heat Mass Transf. 2018;127:1169–79. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.112.

    Article  CAS  Google Scholar 

  39. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08154-3.

    Article  Google Scholar 

  40. Ramezanizadeh M, Alhuyi Nazari M. Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. Int J Low-Carbon Technol. 2019. https://doi.org/10.1093/ijlct/ctz030.

    Article  Google Scholar 

  41. Komeilibirjandi A, Raffiee AH, Maleki A, Alhuyi Nazari M, Safdari Shadloo M. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08838-w.

    Article  Google Scholar 

  42. Ahmadi MH, Hajizadeh F, Rahimzadeh M, Shafii MB, Chamkha AJ. Application GMDH artificial neural network for modeling of Al2O3/water and Al2O3/ethylene glycol thermal conductivity. Int J Heat Technol. 2018;36:773–82.

    Article  Google Scholar 

  43. Radkar RN, Bhanvase BA, Barai DP, Sonawane SH. Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater Sci Energy Technol. 2019;2:161–70. https://doi.org/10.1016/j.mset.2019.01.007.

    Article  Google Scholar 

  44. Ali HM, Ali H, Liaquat H, Bin Maqsood HT, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids. Energy. 2015;84:317–24. https://doi.org/10.1016/j.energy.2015.02.103.

    Article  CAS  Google Scholar 

  45. Kole M, Dey TK. Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids. Appl Therm Eng. 2012;37:112–9. https://doi.org/10.1016/j.applthermaleng.2011.10.066.

    Article  CAS  Google Scholar 

  46. Zhang W, Maleki A, Rosen MA. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J Clean Prod. 2019. https://doi.org/10.1016/J.JCLEPRO.2019.117920.

    Article  Google Scholar 

  47. Li DHW, Chen W, Li S, Lou S. Estimation of hourly global solar radiation using Multivariate Adaptive Regression Spline (MARS): a case study of Hong Kong. Energy. 2019;186:115857. https://doi.org/10.1016/j.energy.2019.115857.

    Article  Google Scholar 

  48. Fridedman JH. Multivariate adaptive regression splines (with discussion). Ann Stat. 1991;19:79–141.

    Google Scholar 

  49. Zhang W, Goh ATC. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci Front. 2016;7:45–52. https://doi.org/10.1016/j.gsf.2014.10.003.

    Article  Google Scholar 

  50. Ivakhnenko AG. The group method of data of handling; a rival of the method of stochastic approximation. Sov Autom Control. 1968;13:43–55.

    Google Scholar 

  51. Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low-Carbon Technol. 2018;13:266–71. https://doi.org/10.1093/ijlct/cty026.

    Article  CAS  Google Scholar 

  52. Mohamadian F, Eftekhar L, Haghighi Bardineh Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid. Nanomed J. 2018;5:217–21. https://doi.org/10.22038/NMJ.2018.05.00005.

    Article  CAS  Google Scholar 

  53. Gholipour Khajeh M, Maleki A, Rosen MA, Ahmadi MH. Electricity price forecasting using neural networks with an improved iterative training algorithm. Int J Ambient Energy. 2018;39:147–58. https://doi.org/10.1080/01430750.2016.1269674.

    Article  CAS  Google Scholar 

  54. Hemmat Esfe M, Abbasian Arani AA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%:70%) hybrid nanofluid. J Mol Liq. 2017;244:252–61. https://doi.org/10.1016/J.MOLLIQ.2017.08.087.

    Article  CAS  Google Scholar 

  55. Hemmat Esfe M, Saedodin S. Experimental investigation and proposed correlations for temperaturedependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles. J Heat Mass Transf Res. 2014;1:47–54. https://doi.org/10.22075/JHMTR.2014.153.

    Article  Google Scholar 

  56. Satti JR, Das DK, Ray D. Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations. Int J Heat Mass Transf. 2017;107:871–81. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.121.

    Article  CAS  Google Scholar 

  57. Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.02.032.

    Article  Google Scholar 

  58. Qin Y, Liang J, Tan K, Li F. The amplitude and maximum of daily pavement surface temperature increase linearly with solar absorption. Road Mater Pavement Des. 2017;18:440–52. https://doi.org/10.1080/14680629.2016.1162732.

    Article  Google Scholar 

  59. Afrand M, Hemmat Esfe M, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E Low-Dimens Syst Nanostruct. 2017;87:242–7. https://doi.org/10.1016/j.physe.2016.10.020.

    Article  CAS  Google Scholar 

  60. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO-water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.015.

    Article  CAS  Google Scholar 

  61. Kannaiyan S, Boobalan C, Nagarajan FC, Sivaraman S. Modeling of thermal conductivity and density of alumina/silica in water hybrid nanocolloid by the application of artificial neural networks. Chin J Chem Eng. 2018. https://doi.org/10.1016/J.CJCHE.2018.07.018.

    Article  Google Scholar 

  62. Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437–47. https://doi.org/10.1007/s10973-017-6680-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akbar Maleki or Narjes Nabipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$\begin{aligned} & TC = - 0.0176657 + N319*0.219462 + N319*N2*0.307774 - N319^{2} \\ & \quad *0.427988 + N2*0.873413 \\ \end{aligned}$$
$$N2 = 7.69955*10^{ - 5} - N70*0.162689 + N3*1.16249$$
$$N3 = - 4.95526*10^{ - 5} + N15*0.261551 + N4*0.738579$$
$$N4 = 0.000136022 - N99*0.298267 + N6*1.29791$$
$$\begin{aligned} & N6 = - 0.00482405 - N11*1.19431 - N11*N16*4.63991 + N11^{2} *4.61091 \\ & \quad + N16*2.21842 \\ \end{aligned}$$
$$\begin{aligned} & N16 = 0.00260313 + N50*0.983077 - N50*N18*825.582 + N50^{2} *410.751 \\ & \quad + N18^{2} *414.853 \\ \end{aligned}$$
$$N18 = - 0.000153167 + N34*0.494953 + N47*0.505449$$
$$N47 = - 0.0223358 + N145*1.11586 + N145*N121*109.727 - N145^{2} *55.9648 - N121^{2} *53.8994$$
$$\begin{aligned} & N121 = - 0.0514928 + N184*3.59611 + N184*N148*11.7972 - N184^{2} *10.9249 \\ & \quad - N148*2.3335 - N148^{2} *1.19407 \\ \end{aligned}$$
$$\begin{aligned} & N34 = 0.0162676 - N322*0.307286 - N322*N101*0.331167 \\ & \quad + N322^{2} *0.494972 + N101*1.24354 - N101^{2} *0.106404 \\ \end{aligned}$$
$$N50 = - 0.0021794 + N78*1.01062 + N78*N101*1.19449 - N78^{2} *1.20683$$
$$N101 = 0.0142793 + N143*2.3709 + N143*N176*4.17943 - N143^{2} *4.09344 - N176*1.44218$$
$$N176 = - 0.0592844 + N204*1.30927 - N204*N221*351.323 + N204^{2} *175.057 + N221^{2} *175.866$$
$$N204 = - 0.225366 - N238*N268*4.47015 + N238^{2} *3.10376 + N268*2.12858$$
$$\begin{aligned} & N143 = - 0.106234 + N185*3.4398 + N185*N169*172.435 - N185^{2} *91.4176 \\ & \quad - N169*1.87794 - N169^{2} *81.7228 \\ \end{aligned}$$
$$\begin{aligned} & N78 = - 0.0562197 + N178*3.50652 - N178*N148*9.15795 \\ & \quad - N148*2.22181 + N148^{2} *8.81021 \\ \end{aligned}$$
$$N148 = - 0.0729269 - N175*N262*2.91955 + N175^{2} *2.45894 + N262*1.37206$$
$$N175 = 0.0769239 + N185*0.789345 - N238*0.1795 + N238^{2} *0.476052$$
$$N238 = - 0.366614 + N245*1.96107 - N245*N328*3.85139 + N245^{2} *0.723865 + N328*1.19108$$
$$N11 = 0.000236778 + N23*0.998401 - N23*N30*167.397 + N23^{2} *82.9438 + N30^{2} *84.4522$$
$$N30 = - 0.0163455 + N145*1.07923 + N145*N63*169.572 - N145^{2} *86.0041 - N63^{2} *83.6506$$
$$N63 = - 0.0735931 + N314*0.377191 - N314^{2} *0.462206 + N69*0.994821$$
$$N314 = 1.17334 - N324*5.16795 + N324*N326*15.9779 - N326^{2} *7.89645$$
$$N326 = 3.46561 + x_{3} *0.0400498 - x_{3}^{2} *0.00573401 - N328*18.3688 + N328^{2} *26.5217$$
$$N324 = - 0.103354 + x_{3} *0.171453 - x_{3} *N325*0.396155 - x_{3}^{2} *0.00265483 + N325^{2} *3.06177$$
$$N23 = - 0.0145464 - N132*N60*356.781 + N132^{2} *178.502 + N60*1.06685 + N60^{2} *178.197$$
$$N60 = - 0.0683454 + N262*0.720575 - N262*N70*1.71076 + N70*0.628952 + N70^{2} *1.27853$$
$$N99 = - 0.00524059 + N182*2.42504 - N182*N138*5.7139 - N138*1.39644 + N138^{2} *5.67566$$
$$N182 = 0.377424 - x_{4} *0.00213238 + x_{4} *N284*0.00947956 - x_{4}^{2} *5.43079*10^{ - 6} - N284*0.90302 + N284^{2} *1.97389$$
$$N284 = - 0.165314 + x_{3} *0.0116425 - x_{3}^{2} *0.000667677 + N300*1.66512 - N300^{2} *0.723299$$
$$N15 = - 0.00295291 + N24*1.01447 - N24*N27*57.5092 + N24^{2} *28.0308 + N27^{2} *29.4603$$
$$N27 = - 0.0157849 + N145*0.79061 + N145*N55*181.895 - N145^{2} *91.8971 + N55*0.286356 - N55^{2} *90.0791$$
$$N55 = 0.0238995 + N67*5.95806 + N67*N69*123.969 - N67^{2} *67.2278 - N69*5.08027 - N69^{2} *56.5903$$
$$N69 = 0.0158676 - N138*3.28471 - N138*N141*9.629 + N138^{2} *9.72383 + N141*4.20539$$
$$N141 = - 0.0330155 - N169*0.671093 + N169*N178*3.57479 + N178*1.83897 - N178^{2} *3.77977$$
$$N169 = - 0.037664 - N185*N298*2.63904 + N185^{2} *2.41529 + N298*1.18464$$
$$N67 = 0.000840653 + N142*2.17137 + N142*N177*3.57604 - N142^{2} *3.56919 - N177*1.17608$$
$$N177 = 0.0643097 + N209*0.687415 - N209*N217*308.398 + N209^{2} *154.537 + N217^{2} *154.208$$
$$N217 = - 0.680632 + N237*1.96497 - N237*N317*5.03311 + N237^{2} *1.49805 + N317*2.81549 - N317^{2} *1.64736$$
$$N317 = 0.808557 - x_{3} *N322*0.046462 + x_{3}^{2} *0.00358317 - N322*3.5375 + N322^{2} *6.33062$$
$$N209 = - 0.571488 + N237*2.86135 - N237*N318*4.21518 + N318*1.27117$$
$$N318 = 1.13386 - N322*2.67351 + N322*N325*8.96291 - N325*2.75097$$
$$N237 = 0.0506727 - N245*0.416666 + N245*N283*2.37448 + N283*1.14746 - N283^{2} *2.02719$$
$$N145 = - 0.0267507 + x_{1} *0.668661 - x_{1} *N178*7.8786 + x_{1}^{2} *3.50955 + N178*0.531387 + N178^{2} *4.07859$$
$$N24 = - 0.0243146 + N132*1.1126 - N132*N48*319.664 + N132^{2} *158.385 + N48^{2} *161.149$$
$$N48 = - 0.0130361 - N80*N106*120.224 + N80^{2} *60.6373 + N106*1.06104 + N106^{2} *59.5158$$
$$N106 = 0.0188887 - N132*3.49404 - N132*N142*9.51607 + N132^{2} *9.62785 + N142*4.40009$$
$$N142 = - 0.0292551 - N170*0.648922 + N170*N178*3.49316 + N178*1.79744 - N178^{2} *3.67412$$
$$N170 = 0.00652534 - N185*N297*2.09961 + N185^{2} *2.14504 + N297*0.962813$$
$$N297 = 0.096511 + x_{1} *1.08962 - N322*0.241671$$
$$N80 = 0.0548859 - N138*3.94016 - N138*N147*220.435 + N138^{2} *116.202 + N147*4.66 + N147^{2} *104.569$$
$$N147 = 0.00347901 - N181*0.296463 - N181*N262*7.55137 + N181^{2} *5.18356 + N262*1.28156 + N262^{2} *2.3753$$
$$N262 = 0.332581 + N286*1.90067 - N286*N321*4.90236 + N286^{2} *1.27135 - N321*2.77042 + N321^{2} *6.17904$$
$$N321 = 1.06442 - x_{2} *0.0335236 + x_{2} *N325*0.102003 - N325*2.37618$$
$$N286 = 0.299854 - x_{1} *N328*1.47893 + x_{1}^{2} *2.22396$$
$$N181 = 0.194506 - x_{4} *0.00180935 + x_{4} *N268*0.00883743 - x_{4}^{2} *6.60581*10^{ - 6} + N268^{2} *0.897453$$
$$N132 = 0.00961835 + N161*0.958064 - N161*N223*36.7956 + N161^{2} *17.9033 + N223^{2} *18.926$$
$$N223 = - 0.0936659 + N239^{2} *0.807559 + N268*1.45895 - N268^{2} *1.34759$$
$$N268 = - 0.00769765 + N283*1.08486 - N283*N325*0.167757$$
$$N161 = - 0.168237 + N300*1.03256 - N300*N184*7.53604 + N300^{2} *2.59234 + N184*0.81681 + N184^{2} *3.89938$$
$$N70 = 0.0251658 - N138*4.27282 - N138*N140*166.714 + N138^{2} *89.6171 + N140*5.14603 + N140^{2} *77.2453$$
$$N140 = - 0.00535533 - N172*0.674549 + N172*N178*3.52513 + N178*1.70163 - N178^{2} *3.55777$$
$$N178 = - 0.0151785 + x_{3} *N242*0.0210041 + N242*0.969038 + N242^{2} *0.0678718$$
$$N242 = 0.417166 - x_{4} *0.00285149 + x_{4} *N300*0.0106948 - x_{4}^{2} *2.44755*10^{ - 6} - N300*1.04339 + N300^{2} *2.09903$$
$$N172 = 0.0575751 - N185*N277*7.60877 + N185^{2} *4.8825 + N277*0.706673 + N277^{2} *3.07754$$
$$N277 = - 0.0401214 + N300*1.62702 - N300*N328*1.35934$$
$$N185 = 0.195967 - x_{4} *0.00186632 + x_{4} *N283*0.00896443 - x_{4}^{2} *6.63628*10^{ - 6} + N283^{2} *0.891171$$
$$N138 = - 0.00840279 + N158*1.04734 - N158*N221*43.0623 + N158^{2} *20.9581 + N221^{2} *22.0316$$
$$N221 = 0.0432807 - N239*0.596357 + N239^{2} *1.46592 + N266*1.36626 - N266^{2} *1.17206$$
$$N266 = 0.298198 + N283*1.02025 - N328*1.45799 + N328^{2} *1.71157$$
$$N283 = 0.139504 + x_{1} *0.238172 + x_{1}^{2} *1.10886 + x_{3} *0.0107559 - x_{3}^{2} *0.000384995$$
$$N239 = - 0.616025 + N245*3.03362 - N245*N325*4.85465 + N325*1.45416$$
$$N158 = - 0.197164 + N184*0.771435 - N184*N298*6.94272 + N184^{2} *3.65626 + N298*1.22415 + N298^{2} *2.06504$$
$$N298 = - 0.0185617 + N300*1.16495 - N300*N322*0.300698$$
$$N322 = 0.0127235 + x_{2} *0.0251002 + x_{2} *x_{4} *9.80065*10^{ - 5} - x_{2}^{2} *0.000390176 - x_{4} *0.00208712 - x_{4}^{2} *2.61385*10^{ - 5}$$
$$N300 = 0.185992 + x_{1} *0.367112 - x_{1} *x_{2} *0.00486533 + x_{1}^{2} *1.14827 - x_{2} *0.00247947 + x_{2}^{2} *5.45705*10^{ - 5}$$
$$N184 = - 0.0282892 + x_{3} *N245*0.0221675 + N245*1.0279$$
$$N245 = 0.541455 - x_{1} *1.79012 + x_{1} *x_{4} *0.0104767 + x_{1}^{2} *3.3013 - x_{4} *0.00235751 - x_{4}^{2} *3.03253*10^{ - 6}$$
$$N319 = 3.1631 - N325*15.7802 + N325*N328*35.1175 + N325^{2} *5.1452 - N328^{2} *18.0806$$
$$N328 = 0.41085 - x_{3} *0.0343551 + x_{3}^{2} *0.00504291 + x_{4} *0.00115375 - x_{4}^{2} *1.70035*10^{ - 5}$$
$$N325 = - 0.133685 + x_{2} *0.0283308 - x_{2} *x_{3} *0.000703991 - x_{2}^{2} *0.000356603 + x_{3}^{2} *0.00566806$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Elahi, M., Assad, M.E.H. et al. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim 143, 4261–4272 (2021). https://doi.org/10.1007/s10973-020-09373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09373-9

Keywords

Navigation