Skip to main content
Log in

Numerical simulation of transient mixed convection of water–Cu nanofluid in a square cavity with multiple rotating cylinders having harmonic motion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixed convection in a lid-driven square cavity with different walls temperature in the existence of four rotating cylinders having harmonic motion is simulated numerically for various parameters such as the solid volume fraction (0 ≤ ϕ ≤ 0.03), Richardson number (0.1 ≤ Ri ≤ 10) and type of motion for each cylinder. Cu–water nanofluids are considered as fluid inside the enclosure. A comparison of full rotation and harmonic rotation in steady and transient cases was made to get a better understanding of the effect of harmonic rotation. The consequences of this study are obtainable in terms of average and local Nusselt numbers, isotherm contours, streamlines contours, velocity profiles, PEC, and entropy generation profiles. Obtained results show that the heat transfer is dependent on the angular velocity of the cylinder, type of rotation, and the nanoparticle concentration. Adding nanoparticles causes to improve the heat transfer rate. However, the effect of the nanofluids on geometry has decreased for the PEC, except for Ri = 1 and a few particular cases. Also, according to the Nusselt number graphs, we can tell that the harmonic motion in this study did not have a considerable effect on the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C p :

Specific heat at constant pressure (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Cavity height (m)

k :

Thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

p :

Pressure (Pa)

Ra:

Rayleigh number

Re:

Reynolds number

\(S_{\text{gen}}^{\prime \prime \prime }\) :

Dimensionless local total entropy generation

T :

Temperature (K)

u, v :

Velocity components in x, y directions (m s−1)

U 0 :

Velocity of lid-driven

U, V :

Dimensionless velocity, u/U0, v/U0

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates, x/H, y/H

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

μ :

Dynamic viscosity (kg ms−1)

ρ :

Density (kg m−3)

θ :

Dimensionless temperature

ϕ :

Solid volume fraction

ω o :

Angular velocity (rad s−1)

Ω:

Dimensionless angular velocity

c:

Cold

h:

Hot, heat transfer

f:

Pure fluid

nf:

Nanofluid

s:

Solid phase

References

  1. Hayase T, Humphrey JAC, Greif R. Numerical calculation of convective heat transfer between rotating coaxial cylinders with periodically embedded cavities. J Heat Transf. 1992;114(3):589–97.

    Article  Google Scholar 

  2. Fu W-S, Cheng C-S, Shieh W-J. Enhancement of natural convection heat transfer of an enclosure by a rotating circular cylinder. Int J Heat Mass Transf. 1994;37(13):1885–97.

    Article  CAS  Google Scholar 

  3. Misirlioglu A. The effect of rotating cylinder on the heat transfer in a square cavity filled with porous medium. Int J Eng Sci. 2006;44(18):1173–87.

    Article  Google Scholar 

  4. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9):2002–18.

    Article  CAS  Google Scholar 

  5. Ghazanfarian J, Nobari MRH. A numerical study of convective heat transfer from a rotating cylinder with cross-flow oscillation. Int J Heat Mass Transf. 2009;52(23):5402–11.

    Article  Google Scholar 

  6. Shih YC, Khodadadi JM, Weng KH, Ahmed A. Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. J Heat Transfer. 2009;131(11):111701–11.

    Article  Google Scholar 

  7. Paramane SB, Sharma A. Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int J Heat Mass Transf. 2009;52(13):3205–16.

    Article  Google Scholar 

  8. Costa VAF, Raimundo AM. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. Int J Heat Mass Transf. 2010;53(5):1208–19.

    Article  CAS  Google Scholar 

  9. Hussain SH, Hussein AK. Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations. Int Commun Heat Mass Transf. 2011;38(2):263–74.

    Article  Google Scholar 

  10. Khanafer K, Aithal SM. Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder. Int Commun Heat Mass Transf. 2017;86:131–42.

    Article  Google Scholar 

  11. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132(2):1189–200.

    Article  CAS  Google Scholar 

  12. Zhang W, Wei Y, Dou H-S, Zhu Z. Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder. Int Commun Heat Mass Transf. 2018;98:143–54.

    Article  Google Scholar 

  13. Selimefendigil F, Öztop HF. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2018;117:331–43.

    Article  CAS  Google Scholar 

  14. Khanafer K, Aithal SM, Vafai K. Mixed convection heat transfer in a differentially heated cavity with two rotating cylinders. Int J Therm Sci. 2019;135:117–32.

    Article  Google Scholar 

  15. Hussain S, Jamal M, Ahmed SE. Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: the impact of nanoparticles. Int Commun Heat Mass Transf. 2019;108:104310.

    Article  CAS  Google Scholar 

  16. Hussain S, Öztop HF, Jamal M, Hamdeh NA. Double diffusive nanofluid flow in a duct with cavity heated from below. Int J Mech Sci. 2017;131–132:535–45.

    Article  Google Scholar 

  17. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28(1):244–55.

    Article  CAS  Google Scholar 

  18. Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection with entropy generation of nanofluid in a lid-driven cavity under the effects of a heat-conducting solid wall and vertical temperature gradient. Eur J Mech B/Fluids. 2018;70:148–59.

    Article  Google Scholar 

  19. Bondarenko DS, Sheremet MA, Oztop HF, Ali ME. Impacts of moving wall and heat-generating element on heat transfer and entropy generation of Al2O3/H2O nanofluid. J Therm Anal Calorim. 2019;136(2):673–86.

    Article  CAS  Google Scholar 

  20. Lacroix M. Natural convection heat transfer around two heated cylinders in an isothermal enclosure including the effect of wall conductance. Int J Numer Methods Heat Fluid Flow. 1994;4:465–76.

    Article  Google Scholar 

  21. Lacroix M, Joyeux A. Coupling of wall conduction with natural convection from heated cylinders in a rectangular enclosure. Int Commun Heat Mass Transf. 1996;23(1):143–51.

    Article  Google Scholar 

  22. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    Article  CAS  Google Scholar 

  23. Ruhani B, Barnoon P, Toghraie D. Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A. 2019;525:616–27.

    Article  CAS  Google Scholar 

  24. Afrouzi HH, Ahmadian M, Moshfegh A, Toghraie D, Javadzadegan A. Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method. Physica A. 2019;535:122486.

    Article  CAS  Google Scholar 

  25. Chouikh R, Guizani A, Maâlej M, Belghith A. Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders. Int Commun Heat Mass Transf. 1999;26(3):329–38.

    Article  CAS  Google Scholar 

  26. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    Article  Google Scholar 

  27. Ji TH, Kim SY, Hyun JM. Transient mixed convection in an enclosure driven by a sliding lid. Heat Mass Transf. 2006;43(7):629.

    Article  Google Scholar 

  28. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982. p. xiv.

    Google Scholar 

  29. Chatterjee D, Gupta SK, Mondal B. Mixed convective transport in a lid-driven cavity containing a nanofluid and a rotating circular cylinder at the center. Int Commun Heat Mass Transf. 2014;56:71–8.

    Article  CAS  Google Scholar 

  30. Shahsavar A, Sardari PT, Toghraie D. Free convection heat transfer and entropy generation analysis of water–Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow. 2019;29:915–34.

    Article  Google Scholar 

  31. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  32. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77(3):662–92.

    Article  Google Scholar 

  33. Alrashed AA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Shabani GAS, Seifi AR, Goodarzi M. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B. 2018;537:176–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, N., Toghraie, D., Zarringhalam, M. et al. Numerical simulation of transient mixed convection of water–Cu nanofluid in a square cavity with multiple rotating cylinders having harmonic motion. J Therm Anal Calorim 143, 4229–4248 (2021). https://doi.org/10.1007/s10973-020-09379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09379-3

Keywords

Navigation