Skip to main content
Log in

Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a mathematical analysis for three-dimensional Eyring–Powell nanofluid nonlinear thermal radiation with modified heat plus mass fluxes is investigated. To enhance the dynamical and physical study of structure, the slip condition is introduced. A Riga plate is employed for avoiding boundary-layer separation to diminish the friction and pressure drag of submarines. To evaluate the heat transfer, the Cattaneo–Christov heat flux model is implemented via appropriate transformation. A comparison between bvp4c results and shooting technique is made. Graphical and numerical illustrations are presented for prominent parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

uvw :

Velocity components

\(\text{Re}_{\text{x}} ,\text{Re}_{\text{y}}\) :

Local Reynolds number

Q :

Modified Hartmann number

Sc:

Schmidt number

\({\text{Nu}}_{\text{x}}\) :

Local Nusselt number

K 1 :

Porosity parameter

\({\text{Nr}}\) :

Radiation parameter

\(\tilde{T}_{\infty }\) :

Ambient temperature

E 1 :

Activation energy

\(f^{\prime } ,g^{\prime }\) :

Velocities

\(\tilde{C}_{\text{f}}\) :

Skin friction coefficient

J 0 :

Current density

\(q_{\text{w}}\) :

Wall heat flux

\(D_{\text{T}}\) :

Thermophoretic diffusion coefficient

x, y, z :

Coordinate axes

\(\Pr\) :

Prandtl number

\(N_{\text{T}}\) :

Thermophoresis number

\({\text{Le}}\) :

Lewis number

\({\text{Sh}}_{\text{x}}\) :

Local Sherwood number

B :

Dimensionless parameter

M :

Magnetic parameter

\(\tilde{T}_{\text{f}}\) :

Convective surface temperature

\(N_{\text{B}}\) :

Brownian motion

\(\tilde{C}_{\infty }\) :

Ambient concentration

\(\delta_{\text{c}}\) :

Time relaxation

\(h_{\text{m}}\) :

Wall mass flux

M 0 :

Magnetization magnets

\(D_{\text{B}}\) :

Brownian diffusion coefficient

β :

Stretching parameter

δ :

Heat basis parameter

σ :

Chemical reaction parameter

γ :

Biot number

λ :

Stretching parameter

α 1 :

Width for magnets and electrodes

δ * :

Electric conductivity

Γ :

Material parameter

\(\varOmega_{\text{E}}\) :

Thermal relaxation time

\(\rho\) :

Density

α :

Velocity slip parameter

ω :

Non-dimensional fluid parameter

β 0 :

Magnetic field strength

ϕ :

Concentration distribution

θ :

Temperature distribution

\(\delta_{\text{t}}\) :

Temperature diffusion

\(\varOmega_{\text{C}}\) :

Concentration relaxation time

\(\tau_{\text{w}}\) :

Wall shear stress

References

  1. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135(1):551–63.

    CAS  Google Scholar 

  2. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;35(2):1009–19.

    Google Scholar 

  3. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135(3):1643–54.

    CAS  Google Scholar 

  4. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138(5):3007–21.

    CAS  Google Scholar 

  5. Szilagyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khryashchev L, Rasanen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73–81.

    CAS  Google Scholar 

  6. Khan LA, Reza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  7. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    CAS  Google Scholar 

  8. Hassan M, Marin M, Ellahi R, Alamri SZ. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf Res. 2018;49(18):1837–48.

    Google Scholar 

  9. Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    Google Scholar 

  10. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82.

    Google Scholar 

  11. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31:218–29.

    Google Scholar 

  12. Maleki H, Alsarraf J, Moghanizadeh A, Hajabdollahi H, Safaei MR. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J Central South Univ. 2019;26(5):1099–115.

    CAS  Google Scholar 

  13. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows. J Therm Anal Calorim. 2019;135(3):1733–41.

    CAS  Google Scholar 

  14. Kamalgharibi M, Hormozi F, Zamzamian SAH, Sarafraz MM. Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents. Heat Mass Transf. 2016;52(1):55–62.

    CAS  Google Scholar 

  15. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F. Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytech Chem Eng. 2016;60(2):106–12.

    CAS  Google Scholar 

  16. Sarafraz MM, Hormozi F. Convective boiling and particulate fouling of stabilized CuO–ethylene glycol nanofluids inside the annular heat exchanger. Int Commun Heat Mass Transf. 2014;53:116–23.

    CAS  Google Scholar 

  17. Sarafraz MM, Hormozi F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int J Therm Sci. 2015;90:224–37.

    CAS  Google Scholar 

  18. Majeed A, Zeeshan A, Bhatti MM, Ellahi R. Heat transfer in magnetite (Fe3O4) nanoparticles suspended with conventional fluids: refrigerant-134a (C2H2F4), kerosene (C10H22) and water (H2O) under the impact of dipole. Heat Transf Res. 2020;51(3):217–32.

    Google Scholar 

  19. Hassan A, Wahab A, Qasim MA, Janjua MM, Ali MA, Ali HM, Jadoon TR, Ali E, Raza A, Javaid N. Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew Energy. 2020;145:282–93.

    CAS  Google Scholar 

  20. Ambreen T, Saleem A, Ali HM, Shehzad SA, Park CW. Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pin-fins. Powder Technol. 2019;355:552–63.

    CAS  Google Scholar 

  21. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluid with nanoparticles. In: Conference: 1995 international mechanical engineering congress and exhibition, San Francisco, CA, 1995, p. 12–17.

  22. Boungiorno J, Hu LW, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of potential features, issues, and research gaps. Nucl Technol. 2008;162:80–91.

    Google Scholar 

  23. Powell RE, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature. 1944;154:427–8.

    CAS  Google Scholar 

  24. Patel M, Timol MG. Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl Numer Math. 2009;59:84–92.

    Google Scholar 

  25. Hayat T, Abbas Z, Qasim M, Obidet S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary condition. Int J Heat Mass Transf. 2012;8:17–22.

    Google Scholar 

  26. Akbar NS, Ebraid A, Khan ZH. Numerical analysis of magnetic field effects on Eyring–Powell fluid flow towards a stretching sheet. J Magn Magn Mater. 2015;382:355–8.

    Google Scholar 

  27. Hayat T, Hussain Z, Farooq M, Alsaedi A. Magnetohydrodynamic flow of Powell–Eyring fluid by a stretching cylinder with Newtonian heating. Therm Sci. 2018;22:371–82.

    Google Scholar 

  28. Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2013;37(3):1451–7.

    Google Scholar 

  29. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383:276–81.

    CAS  Google Scholar 

  30. Ellahi R, Zeeshan A, Hussain F, Abbas T. Thermally charged MHD bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles through slippery walls. Coatings. 2019;9:300.

    CAS  Google Scholar 

  31. Ellahi R, Zeeshan A, Hussain F, Abbas T. Two-phase Couette flow of Couple stress fluid with temperature dependent viscosity thermally affected by magnetized moving surface. Symmetry. 2019;11(5):647.

    CAS  Google Scholar 

  32. Ellahi R, Hussain F, Ishtiaq F, Hussain A. Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an approach to upgrade industrial sieves/filters. Pramana. 2019;93:34.

    Google Scholar 

  33. Khan AA, Bukhari SR, Marin M, Ellahi R. Effects of chemical reaction on third grade magnetohydrodynamics fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transf Res. 2019;50(11):1061–80.

    Google Scholar 

  34. Ellahi R, Sait SM, Shehzad N, Mobin N. Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry. 2019;11:1038.

    CAS  Google Scholar 

  35. Maleki H, Safaei MR, Alrashed AAAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135:1655–66.

    CAS  Google Scholar 

  36. Eldabe NT, Hassan AA, Mohamed MA. Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zeitschrift für Naturforschung A. 2003;58:204–10.

    CAS  Google Scholar 

  37. Malik MY, Bilal S, Bibi M, Ali U. Logarithmic and parabolic curve fitting analysis of dual stratified stagnation point MHD mixed convection flow of Eyring–Powell fluid induced by an inclined cylindrical stretching surface. Results Phys. 2017;7:544–52.

    Google Scholar 

  38. Islam S, Shah A, Zhou CY, Ali I. Homotopy perturbation analysis of slider bearing with Powell–Eyring fluid. Z Angew Math Phys. 2009;60:1178.

    Google Scholar 

  39. Akbar NS, Nadeem S. Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. Int J Heat Mass Transf. 2012;55:375–83.

    Google Scholar 

  40. Sirohi V, Timol MG, Kalthia NL. Powell–Eyring model flow near an accelerated plate. Fluid Dyn Res. 1987;2(3):193–204.

    Google Scholar 

  41. Nadeem S, Akbar NS, Ali M. Endoscopic effects on the peristaltic flow of an Eyring–Powell fluid. Meccanica. 2012;47(3):687–97.

    Google Scholar 

  42. Jayachandra Babu M, Sandeep N, Raju CS. Heat and mass transfer in MHD Eyring–Powell nanofluid flow due to cone in porous medium. Int J Eng Res Afr. 2016;19:57–74.

    Google Scholar 

  43. Yoon HK, Ghajar AJ. A note on the Powell–Eyring fluid model. Int Commun Heat Mass Transf. 1987;14(4):381–90.

    CAS  Google Scholar 

  44. Agbaje TM, Mondal S, Motsa SS, Sibanda P. A numerical study of unsteady non-Newtonian Powell–Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation. Alex Eng J. 2017;56(1):81–91.

    Google Scholar 

  45. Gailitis A, Lielausis O. On the possibility to reduce the hydrodynamic drag of a plate in an electrolyte. Appl Magnetohydrodyn Rep Phys Inst Riga. 1961;12:143–6.

    Google Scholar 

  46. Ahmad R, Mustafa M, Turkyilmazoglu M. Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study. Int J Heat Mass Transf. 2017;111:827–35.

    CAS  Google Scholar 

  47. Iqbal Z, Mehmood Z, Azhar E, Maraj EN. Numerical investigation of nanofluidic transport of gyrotactic microorganisms submerged in water towards Riga plate. J Mol Liq. 2017;234:296–308.

    CAS  Google Scholar 

  48. Khan NA, Aziz S, Khan NA. MHD flow of Powell–Eyring fluid over a rotating disk. J Taiwan Inst Chem Eng. 2014;45(6):2859–67.

    CAS  Google Scholar 

  49. Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci. 2011;50(7):1326–32.

    CAS  Google Scholar 

  50. Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.

    CAS  Google Scholar 

  51. Riaz A, Ellahi R, Bhatti MM, Marin M. Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular complaint channel. Heat Transf Res. 2019;50(16):1539–60.

    Google Scholar 

  52. Gireesha BJ, Gorla RS, Mahanthesh B. Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J Nanofluids. 2015;4(4):474–84.

    Google Scholar 

  53. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink. AIP Adv. 2015;5(1):017107.

    Google Scholar 

  54. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. Three-dimensional boundary layer flow of Maxwell nanofluid. J Mol Liq. 2017;229:495–500.

    CAS  Google Scholar 

  55. Hedayati F, Malvandi A, Kaffash MH, Ganji DD. Fully developed forced convection of alumina/water nanofluid inside microchannels with asymmetric heating. Powder Technol. 2015;269:520–31.

    CAS  Google Scholar 

  56. Fukui S, Kaneko R. A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. J Tribol. 1990;112(1):78–83.

    Google Scholar 

  57. Maxwell JC. On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond. 1879;170:231–56.

    Google Scholar 

  58. Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol. 1993;115(2):289–94.

    CAS  Google Scholar 

  59. Hsia YT, Domoto GA, Hsia YT, Domoto GA. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Tribol. 1983;105:120–30.

    Google Scholar 

  60. Maleque K. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. 2013;2013:692516.

    Google Scholar 

  61. Zhang J, Li Y, Xie J. Numerical simulation of fractional control system using Chebyshev polynomials. Math Probl Eng. 2018;2018:4270764.

    Google Scholar 

  62. Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 2016;6(1):627–33.

    Google Scholar 

  63. Hemeda AA, Eladdad EE. New iterative methods for solving Fokker–Planck equation. Math Probl Eng. 2018;2018:6462174.

    Google Scholar 

  64. Asadollahi A, Esmaeeli A. Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann method. Physica A. 2018;498:33–49.

    CAS  Google Scholar 

  65. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    CAS  Google Scholar 

  66. Ellahi R, Sait SM, Shehzad N, Ayaz Z. A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Meth Heat Fluid Flow. 2020;30(2):834–54.

    Google Scholar 

  67. Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci. 2015;60:83–95.

    CAS  Google Scholar 

  68. Khan JA, Mustafa M, Hayat T, Alsaedi A. Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS ONE. 2015;10:0137363.

    Google Scholar 

  69. Nadeem S, Muhammad N. Impact of stratification and Cattaneo–Christov heat flux in the flow saturated with porous medium. J Mol Liq. 2016;224:423–30.

    CAS  Google Scholar 

  70. Hayat T, Zubair M, Waqas M, Alsaedi A, Ayub M. On doubly stratified chemically reactive flow of Powell–Eyring liquid subject to non-Fourier heat flux theory. Results Phys. 2017;7:99–106.

    Google Scholar 

  71. Salahuddin T, Malik MY, Hussain A, Bilal S, Awais M. MHD flow of Cattanneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach. J Magn Magn Mater. 2016;401:991–7.

    CAS  Google Scholar 

  72. Hayat T, Ali Shehzad S, Qasim M, Asghar S. Three-dimensional stretched flow via convective boundary condition and heat generation/absorption. Int J Numer Methods Heat Fluid Flow. 2014;24(2):342–58.

    Google Scholar 

  73. Hayat T, Muhammad T, Alsaedi A, Ahmad B. Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys. 2016;6:897–903.

    Google Scholar 

  74. Umar M, Akhtar R, Sabir Z, Wahab HA, Zhiyu Z, Imran A, Shoaib M, Raja MAZ. Numerical treatment for the three-dimensional Eyring–Powell fluid flow over a stretching sheet with velocity slip and activation energy. Adv Math Phys. 2019;2019:9860471.

    Google Scholar 

  75. Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019;135(1):207–22.

    CAS  Google Scholar 

  76. Wang CY. The three dimensional flow due to a stretching flat surface. Phys Fluids. 1984;27(8):1915.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ellahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, T., Waqas, H., Khan, S.A. et al. Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim 143, 929–944 (2021). https://doi.org/10.1007/s10973-020-09459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09459-4

Keywords

Navigation