Skip to main content
Log in

Numerical investigation of heat and mass transfer of water—silver nanofluid in a spiral heat exchanger using a two-phase mixture method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study numerically investigates the heat and mass transfer characteristics of water—silver nanofluid flowing in a spiral heat exchanger (HX) using the two-phase mixture model. The hot side of the HX is pure water at the temperature of 343 K and Re = 500, while the cold side is nanofluid with volume fraction up to 5% at 305 K and Re number ranging from 500 to 2000. The cold and hot tubes are concentrically twisted 3.5, 5.5 and 7.5 turns in order to explore the heat transfer effectiveness of the heat exchanger as a function of the spiral turns. The results indicate that increasing the volume fraction of nanoparticles, Re number and the number of turns increases the overall heat transfer coefficient, heat rate absorbed by the cold fluid and pumping power of the HX noticeably. The above-mentioned factors also improve the temperature stability of the input fluid along with the heat exchanger. The effectiveness of the HX decreases by increasing the Re number, the volume fraction of nanoparticles and turning rounds due to the greater pressure drop of the coolant fluid. At a constant Re number, increasing the volume fraction and number of turns enhances the NTU parameter to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36.

    Article  CAS  Google Scholar 

  2. Kabeel AE, Abou El Maaty T, El Samadony Y. The effect of using nano-particles on corrugated plate heat exchanger performance. Appl Therm Eng. 2013;52(1):221–9.

    Article  CAS  Google Scholar 

  3. Pandey SD, Nema VK. Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Thermal Fluid Sci. 2012;38:248–56.

    Article  CAS  Google Scholar 

  4. Saeedan M, Solaimany Nazar A, Abbasi Y, Karimi R. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube. Appl Thermal Eng. 2016;100:721–9.

    Article  CAS  Google Scholar 

  5. Wu Z, Wang L, Sundén B. Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl Therm Eng. 2013;60:266–74.

    Article  CAS  Google Scholar 

  6. Lotfi R, Rashidi AM, Amrollahi A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39:108–11.

    Article  CAS  Google Scholar 

  7. Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014;70:289–97.

    Article  CAS  Google Scholar 

  8. Javadi FS, Sadeghipour S, Saidur R, BoroumandJazi G, Rahmati B, Elias MM, Sohel MR. The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. Int Commun Heat Mass Transfer. 2013;44:58–63.

    Article  CAS  Google Scholar 

  9. Abed AM, Alghoul MA, Sopian K, Mohammed HA, Majdi HS, Al-Shamani AN. Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem Eng Process. 2015;87:88–103.

    Article  CAS  Google Scholar 

  10. Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A. Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf. 2014;50:8–14.

    Article  CAS  Google Scholar 

  11. Huminic G, Huminic A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int J Heat Mass Transf. 2011;54:4280–7.

    Article  CAS  Google Scholar 

  12. Akhtari M, Haghshenasfard M, Talaie MR. Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. Numer Heat Transf Part A. 2013;63:941–58.

    Article  CAS  Google Scholar 

  13. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33.

    Article  CAS  Google Scholar 

  14. Rangasamy R. Experimental and numerical studies of a spiral plate heat exchanger. Thermal Sci. 2014;18(4):1355–60.

    Article  Google Scholar 

  15. Shariat M, et al. Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts. Appl Therm Eng. 2011;31(14–15):2348–59.

    Article  CAS  Google Scholar 

  16. Manninen M, et al. On the mixture model for multiphase flow. Espoo: VTT Publications; 1996.

    Google Scholar 

  17. Schiller L, Naumann A. A drag coefficient correlation. Z. Ver Deutsch Ing. 1935;77:318.

    Google Scholar 

  18. Chon H, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:1–3.

    Article  Google Scholar 

  19. Maiga SE, Nguyen CT, Galanis N, Roy G. Heat transfer behaviors of nanofluids in a uniformly heated tube. Super Lattices Microstruct. 2004;35:543–57.

    Article  CAS  Google Scholar 

  20. Turkyilmazoglu M. Performance of direct absorption solar collector with nanofluid mixture. Energy Convers Manag. 2016;114:1–10.

    Article  CAS  Google Scholar 

  21. El-Saida EMS, Abou Al-Sood MM. Shell and tube heat exchanger with new segmental baffles configurations: a comparative experimental investigation. Appl Therm Eng. 2019;150:803–10.

    Article  Google Scholar 

  22. Marzouk SA, Abou Al-Sood MM, El-Said EMS, El-Fakharany MK. Effect of wired nails circular-rod inserts on tube side performance of shell and tube heat exchanger: experimental study. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114696.

    Article  Google Scholar 

  23. El-Said EMS, Abou Alsood MM. Experimental investigation of air injection effect on the performance of horizontal shell and multi-tube heat exchanger with baffles. Appl Therm Eng. 2018;134:238–47.

    Article  Google Scholar 

  24. El-Said EMS, Abdulaziz M, Awad MM. Thermodynamic performance evaluation for helical plate heat exchanger based on second law analysis. Proc Rom Acad Ser A. 2018;19:237–42.

    Google Scholar 

  25. Aghahadi MH, Niknejadi MR, Toghraie D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struct. 2019;1197:497–507.

    Article  CAS  Google Scholar 

  26. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powd Tech. 2018;325:78–91.

    Article  CAS  Google Scholar 

  27. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powd Tech. 2018;338:806–18.

    Article  CAS  Google Scholar 

  28. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    Article  CAS  Google Scholar 

  29. Akbari OA, Karimipour A, Toghraie D, Safaei MR, Goodarzi M, Alipour H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Article  Google Scholar 

  30. Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with varying volume fraction in a rectangular two-dimensional micro channel. Ind J Sci Technol. 2016;8:2015.

    Google Scholar 

  31. Safaei MR, Gooarzi M, Akbari OA, Safdari Shadloo M, Dahari M. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. In: Murshed SMS, editor. Electronics cooling. London: InTech; 2016. https://doi.org/10.5772/62898.

    Chapter  Google Scholar 

  32. Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2016;88:60–76.

    Article  Google Scholar 

  33. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of Water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8:1–25.

    Article  CAS  Google Scholar 

  34. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabandeh, E., Boushehri, R., Akbari, O.A. et al. Numerical investigation of heat and mass transfer of water—silver nanofluid in a spiral heat exchanger using a two-phase mixture method. J Therm Anal Calorim 144, 1003–1012 (2021). https://doi.org/10.1007/s10973-020-09533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09533-x

Keywords

Navigation