Skip to main content
Log in

Nanomaterial between two plates which are squeezed with impose magnetic force

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Current investigation is surveyed the role of altering Lorentz force on nanomaterial flowing within two discs and its thermal behavior. The basis governing formula convert to ODEs based on applying two phase model. Based on acquired outcomes, there is direct correlation between Nu and Nt. Invoking the impact of S, it is concluded that growth of S guides to reduce in Nu and similar tendency can be seen for A because of reduction of temperature gradient with rise of amount of inlet velocity. Impermeable wall leads to stronger influence of Nt and outcomes reveal that Nu has direct relationship with Nt. Reducing impact of A declines with rise of Nt which means that thermophoresis act against permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Shakeri F, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  2. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  3. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M, Arabkoohsar A, Ismaeil KAR. Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model. Int Commun Heat Mass Transfer. 2020;112:104488.

    Article  CAS  Google Scholar 

  5. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  7. Lublóy É, Kopecskó K, Balázs GL, Szilágyi IM, Madarász J. Improved fire resistance by using slag cements. J Therm Anal Calorim. 2016;125(1):271–9.

    Article  CAS  Google Scholar 

  8. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019;240:118235. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  9. Sheikholeslami M, Sheremet MA, Shafee A, Tlili I. Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Physica A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.124058.

    Article  Google Scholar 

  10. Gao W, Wang WF, Farahani MR. Topological indices study of molecular structure in anticancer drugs. J Chem. 2016;2016:3216327. https://doi.org/10.1155/2016/3216327.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Farshad SA, Shafee A, Tlili I. Modeling of solar system with helical swirl flow device considering nanofluid turbulent forced convection. Physica A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123952.

    Article  Google Scholar 

  12. Shafee A, Jafaryar M, Abohamzeh E, Nam ND, Tlili I. Simulation of thermal behavior of hybrid nanomaterial in a tube improved with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09247-9.

    Article  Google Scholar 

  13. Sheikholeslami M, Nematpour Keshteli A, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq. 2020;300:112329.

    Article  CAS  Google Scholar 

  14. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Article  Google Scholar 

  15. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Khang Nguyen T. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  16. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  17. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  18. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, Jilani AK, Tlili I. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  19. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  20. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Google Scholar 

  21. Alqahtani RT, Atangana A. Competition model in groundwater: three boreholes taping water out from same aquifer. Chaos Solitons Fractals. 2019;128:98–103.

    Article  Google Scholar 

  22. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Utilizing copper oxide nanoparticles for expedition of solidification within a storage system. J Mol Liq. 2020;302:112371. https://doi.org/10.1016/j.molliq.2019.112371.

    Article  CAS  Google Scholar 

  23. Xiong Q, Abohamzeh E, Ali JA, Hamad SM, Tlili I, Shafee A, Habibeh H, Nguyen TK. Influences of nanoparticles with various shapes on MHD flow inside wavy porous space in appearance of radiation. J Mol Liq. 2019;292:111386.

    Article  CAS  Google Scholar 

  24. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Article  Google Scholar 

  25. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  26. Karuppasamy M, Saravanan R, Chandrasekaran M, Muthuraman V. Numerical exploration of heat transfer in a heat exchanger tube with cone shape inserts and Al2O3 and CuO nanofluids. Mater Today Proc. 2019. https://doi.org/10.1016/j.matpr.2019.08.242.

    Article  Google Scholar 

  27. Atangana A. Non validity of index law in fractional calculus: a fractional dif- ferential operator with Markovian and non-Markovian properties. Phys A. 2018;505:688–706.

    Article  Google Scholar 

  28. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A. TK Nguyen (2020) Nanoparticles for water desalination in solar heat exchanger; Review. J Therm Anal Calorim. 2020;139:1619–36.

    Article  CAS  Google Scholar 

  29. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  30. Atangana A, Botha JF. A generalized ground water flow equation using tghe concept of variable order derivative. Boundary Layer Prob. 2013;1:53–60.

    Article  Google Scholar 

  31. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  32. Atangana A, Koca I. Chaos in a simple nonlinear syatem with Atan- gana–Baleanu derivative of fractional order. Chaos Solitons Fractals. 2016;89:447–54.

    Article  Google Scholar 

  33. Zhao D, Hedayat M, Barzinjy AA, Dara RN, Shafee A, Tlili I. Numerical investigation of Fe3O4 nanoparticles transportation due to electric field in a porous cavity with lid walls. J Mol Liq. 2019;293:111537.

    Article  CAS  Google Scholar 

  34. Tang G, Shafee A, Nam ND, Tlili I. Coulomb forces impacts on nanomaterial transportation within porous tank with lid walls. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09407-2.

    Article  Google Scholar 

  35. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Article  Google Scholar 

  36. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transfer. 2010;53:2477–83.

    Article  CAS  Google Scholar 

  37. Gao W, Zhu LL. Gradient learning algorithms for ontology computing. Comput Intell Neurosci. 2014;2014:438291. https://doi.org/10.1155/2014/438291.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  39. Manh TD, Salehi F, Shafee A, Nam ND, Shakeriaski F, Babazadeh H, Vakkar A, Tlili I. Role of magnetic force on the transportation of nano powders including radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09182-9.

    Article  Google Scholar 

  40. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.

    Article  Google Scholar 

  41. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  42. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  43. Stefan MJ. Versuch Über die scheinbare adhesion. Akad Wissensch Wien Math Natur. 1874;69:713–21.

    Google Scholar 

  44. Mahmood M, Asghar S, Hossain MA. Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat Mass Transf. 2007;44:165–73.

    Article  Google Scholar 

  45. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  46. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplment C):218–24.

    Article  Google Scholar 

  47. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  48. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  49. Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals. 2016;89:290–4.

    Article  Google Scholar 

  50. Dinh MT, Tlili I, Dara RN, Shafee A, Al-Jahmany YYY, Nguyen-Thoi T. Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer. Physica A. 2020;540:123036.

    Article  CAS  Google Scholar 

  51. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888.

    Article  CAS  Google Scholar 

  52. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transfer. 2018;91:262–73.

    Article  CAS  Google Scholar 

  53. Rabbi KM, Sheikholeslami M, Karim A, Shafee A, Li Z, Tlili I. Prediction of MHD flow and entropy generation by artificial neural network in square cavity with heater-sink for nanomaterial. Phys A. 2020;541:123520.

    Article  CAS  Google Scholar 

  54. Babazadeh H, Ambreen T, Shehzad SA, Shafee A. Ferrofluid non-Darcy heat transfer involving second law analysis: an application of CVFEM. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09264-z.

    Article  Google Scholar 

  55. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med. 2015;2015:418106. https://doi.org/10.1155/2015/418106.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.

    Article  Google Scholar 

  57. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  58. Anitha S, Thomas T, Parthiban V, Pichumani M. What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Adv Powder Technol. 2019;30(12):3107–17.

    Article  CAS  Google Scholar 

  59. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H. A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020;215:115465.

    Article  CAS  Google Scholar 

  60. Diglio G, Roselli C, Sasso M, Channabasappa UJ. Borehole heat exchanger with nanofluids as heat carrier. Geothermics. 2018;72:112–23.

    Article  Google Scholar 

  61. Mustafa M, Hayat T, Obaidat S. On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica. 2012. https://doi.org/10.1007/s11012-012-9536-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Reza Hajizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babazadeh, H., Muhammad, T., Shakeriaski, F. et al. Nanomaterial between two plates which are squeezed with impose magnetic force. J Therm Anal Calorim 144, 1023–1029 (2021). https://doi.org/10.1007/s10973-020-09619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09619-6

Keywords

Navigation