Skip to main content
Log in

Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Slippage impacton peristaltic transport of MHD hybrid nanofluids (TiO2–Cu/H2O) in an asymmetric channel is addressed. Impact of viscous dissipation and Hall current are analyzed in the modeling as well. Constitutive expressions for viscoelastic Jeffery fluid are employed. The mathematical expressions of the problem are transformed into a set of ordinary differential equations by employing appropriate quantities. Well-known long wavelength assumption is invoked. The obtained dimensionless model is then numerically solved with the help of Adams–Bashforth method. The effects of sundry parameters on flow distributions are demonstrated via plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(h_{1} (x , {\text{ t)}}\) :

Right wall in fixed frame

\(h_{2} (x , {\text{ t)}}\) :

Left wall in fixed frame

\(a_{1}\) :

Right wall amplitude

\(a_{2}\) :

Left wall amplitude

\(d_{1} + d_{2}\) :

Width of the channel

\(\overline{p}\) :

Pressure (Pa)

\(T\) :

Temperature (K)

\(T_{\text{m}}\) :

Mean temperature (K)

\(\left( {\overline{U} ,\overline{V} } \right)\) :

Velocity component in fixed frame (ms−1)

\(\varvec{S}\) :

Extra stress tensor (Pa)

\(c_{\text{p}}\) :

Specific heat (JK−1 kg−1)

\(M\) :

Hartmann number

\({\text{Gr}}\) :

Grashof number

\(Q_{\text{o}}\) :

Heat source/sink parameter (Wm−2 K−1)

\({\text{Br}}\) :

Brinkman number

\(\text{Re}\) :

Reynolds number

\(\Pr\) :

Prandtl number

\(m\) :

Hall parameter

\(n\) :

Shape factor

\(\overline{\beta }_{1}\) :

Velocity slip parameter

\(\overline{{\beta_{2} }}\) :

Thermal slip parameter

\(\varPhi\) :

Nanoparticles volume fraction

\(\lambda\) :

Wavelength (m)

\(\delta\) :

Wave number (dimensionless)

\(\psi\) :

Stream function (m2 s−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\sigma\) :

Electric conductivity (m−3 kg−1 s3 A2)

\(\kappa\) :

Thermal conductivity (Wm−1 K−1)

\(\beta\) :

Thermal expansion (K−1)

\(\varepsilon\) :

Dimensionless heat source/sink parameter

\(\lambda_{1}\) :

Relaxation to Radiation time ratio

\(\lambda_{2}\) :

Retardation time

\({\text{f}}\) :

Base fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

\({\text{s}}_{1}\) :

First solid component

\({\text{s}}_{2}\) :

Second solid component

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;213:99–105.

    Google Scholar 

  2. Das S, Jana RN. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex Eng J. 2015;54:55–64.

    Google Scholar 

  3. Venkateswarlu S, Varma SVS, Kiran Kumar RVMSS. Thermo-diffusion and non-uniform heat source/sink effects on hydromagnetic flow of Cu and TiO2 water-based nanofluid partially filled with a porous medium. Inform Med Unlocked. 2018;13:51–61.

    Google Scholar 

  4. Ellahi R, Zeeshan A, Hussain F, Abbas T. Study of shiny film coating on multi-fluid flows of a rotating disk suspended with nano-sized silver and gold particles: a comparative analysis. Coatings. 2018. https://doi.org/10.3390/coatings8120422.

    Article  Google Scholar 

  5. Turkyilmazoglu M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput Methods Progr Biomed. 2019;179:104997.

    Google Scholar 

  6. Siddiqui AA, Turkyilmazoglu M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines. 2019. https://doi.org/10.3390/mi10060373.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019;25:683–9.

    Google Scholar 

  8. Ullah N, Nadeem S, Khan AU. Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods. J Therm Anan Calorim. 2020. https://doi.org/10.1007/s10973-020-09378-4.

    Article  Google Scholar 

  9. Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017;7:2317–24.

    Google Scholar 

  10. Iqbal Z, Azhar E, Maraj EN. Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3–Ag/H2O hybrid nanofluid. Eur Phys J Plus. 2017. https://doi.org/10.1140/epjp/i2017-11806-0.

    Article  Google Scholar 

  11. Usman M, Hamid M, Zubair T, Haq RU, Wang W. Cu–Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf. 2018;126:1347–56.

    CAS  Google Scholar 

  12. Waini I, Ishak A, Pop L. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int J Heat Mass Transf. 2019;136:288–97.

    CAS  Google Scholar 

  13. Nawaz M. Role of hybrid nanoparticles in the thermal performance of Sutterby fluid, the ethylene glycol. Physica A. 2020;537:122447-10.

    Google Scholar 

  14. Abbas N, Malik MY, Nadeem S. Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput Methods Progr Biomed. 2019. https://doi.org/10.1016/j.cmpb.2019.105136.

    Article  Google Scholar 

  15. Shahzadi I, Ijaz S. On model of hybrid Casson nanomaterial considering endoscopy in a curved annulus: a comparative study. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab34bb.

    Article  Google Scholar 

  16. Nadeem S, Abbas N, Malik MY. Inspection of hybrid based nanofluid flow over a curved surface. Comput Methods Progr Biomed. 2020;189:105193–6.

    CAS  Google Scholar 

  17. Devi SPA, Devi SSU. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. DE Gruyter. 2016;15:249–57.

    Google Scholar 

  18. Nawaz M, ShafiaRana Saleem S, Alharbi S. Numerical study on enhancement of heat transfer in hybrid nano-micropolar fluid. Phys Scr. 2020;95(4):045201.

    Google Scholar 

  19. Aman S, Zokri SM, Ismail Z, Salleh MZ, Khan L. Effect of MHD and porosity on Exact solutions and flow of a hybrid Casson—nanofluid. J Adv Res Fluid MechTherm Sci. 2018;44:131–9.

    Google Scholar 

  20. Acharya N, Maity S, Kundu PK. Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization. Appl Nanosci. 2020;10:633–47.

    CAS  Google Scholar 

  21. Latham TW. Fluid motion in a peristaltic pump. Mass: MIII Cambridge MS Thesis. 1966.

  22. Shapiro H, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Google Scholar 

  23. Tripathi D. Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model. 2013;57:1270–83.

    Google Scholar 

  24. Riaz A, BhattiMM Ellahi R, Zeeshan A, Sait SM. Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions. Symmetry. 2020;12(1):102.

    Google Scholar 

  25. Ellahi R, Bhatti MM, Vafai K. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int J Heat Mass Transf. 2014;71:706–19.

    Google Scholar 

  26. Hayat T, Zahir H, Mustafa M, Alsaedi A. Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and complaint walls: a numerical study. Results Phys. 2016;6:805–10.

    Google Scholar 

  27. Fusi L, Farina A. Peristaltic axisymmetric flow of a Bingham fluid. Appl Math Comput. 2018;320:1–15.

    Google Scholar 

  28. Eytan O, Elad D. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol. 1999;61:221–38.

    CAS  PubMed  Google Scholar 

  29. Srinivas S, Gayathri R, Kothandapani M. Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Commun Nonlinear Sci Numer Simul. 2011;16:1845–18632.

    Google Scholar 

  30. Vajravelu K, Sreenadh S, Lakshminarayana P, Sucharitha G, Rashidi MM. Peristaltic flow of Phan–Thien–Tanner fluid in an asymmetric channel with porous medium. J Appl Fluid Mech. 2016;9:1615–25.

    Google Scholar 

  31. Khan AA, Farooq A, Vafai K. Impact of induced magnetic field on Synovial fluid with peristaltic flow in an asymmetric channel. J Magn Magn Mater. 2018;15:54–67.

    Google Scholar 

  32. Abbasi FM, Hayat T, Ahmad B. Peristaltic transport of copper–water nanofluid saturating porous medium. Physica E. 2015;67:47–53.

    CAS  Google Scholar 

  33. Akbar NS, Butt AW. Ferromagnetic effects for peristaltic flow of Cu–water nanofluid for different shapes of nanosize particles. Appl Nano Sci. 2016;6:379–85.

    CAS  Google Scholar 

  34. Mekheimer KH, Hasona WM, Abo-Elkhair RE, Zaher AZ. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Phys Lett A. 2018;382:85–93.

    CAS  Google Scholar 

  35. MosayebidorchehS Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (part 1: straight channel). Int J Heat Mass Transf. 2018;126:790–9.

    Google Scholar 

  36. Farooq S, Khan MI, Waqas M, Hayat T, Alsaedi A. Peristalsis of carbon nanotubes with radiative heat flux. Appl Nanosci. 2020;10:347–57.

    CAS  Google Scholar 

  37. Ellahi R, Bhatti MM, Khalique CM. Three-dimensional flow of Carreau fluid model induced by peristaltic wave in the presence of magnetic field. J Mol Liq. 2017;241:1059–68.

    CAS  Google Scholar 

  38. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  39. Sadaf H, Nadeem S. Fluid Flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer. Can J Phys. 2020;98:191–7.

    CAS  Google Scholar 

  40. Abbasi FM, Hayat T, Ahmad B. Peristalsis of silver–water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq. 2015;207:248–55.

    CAS  Google Scholar 

  41. Abbasi FM, Shanakhat I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.

    CAS  Google Scholar 

  42. Saleem S, Abd El-Aziz M. Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects. Eur Phys J Plus. 2019;134:184.

    Google Scholar 

  43. Bhatti MM, Rashidi MM. Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effect. Propuls Power Res. 2017;6:177–85.

    Google Scholar 

  44. Asha SK, Sunitha G. Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Studies Therm Eng. 2020;17:100560-15.

    Google Scholar 

  45. Alvi N, Latif T, Hussain Q, Asghar S. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Results Phys. 2016;6:1109–25.

    Google Scholar 

  46. Reddy MG, Makinde OD. Magnetohydrodynamic peristaltic transport of Jeffery nanofluid in an asymmetric channel. J Mol Liq. 2016;223:1242–8.

    CAS  Google Scholar 

  47. Mehmood R, Nadeem S, Saleem S, Akbar NS. Flow and Heat Transfer analysis of a Jeffery Nano fluid impinging obliquely over a stretched plate. J Taiwan Inst Chem Eng. 2017;74:49–58.

    CAS  Google Scholar 

  48. Saif RS, Muhammad T, Sadia H, Ellahi R. Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface. Physica A. 2020. https://doi.org/10.1016/j.physa.2019.124060

    Article  Google Scholar 

  49. Hasona WM, El-Shekipy AA, Ibrahim MG. Combined effects of magnetohydrodynamic and temperature dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: applications to oil refinement. Int J Heat Mass Transf. 2018;126:700–14.

    CAS  Google Scholar 

  50. Sadaf H, Nadeem S. Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinowitsch fluid model. J Bionic Eng. 2017;14:182–90.

    Google Scholar 

  51. Shaheen A, Asjad MI. Peristaltic flow of a Sisko fluid over a convectively heated surface with viscous dissipation. J Phys Chem Solids. 2018;122:210–7.

    CAS  Google Scholar 

  52. Farooq S, Hayat T, Ahmad B. A theoretical analysis for peristalsis of Casson material with thermal radiation and viscous dissipation. Therm Sci. 2019;23:3351–64.

    Google Scholar 

  53. Abbasi FM, Hayat T, Alsaadi F. Hydromagnetic peristaltic transport of water-based nanofluid with slip effects through an asymmetric channel. Int J Mod Phys B. 2015;29:1550151-17.

    Google Scholar 

  54. Bhatti MM, Abbas MA. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffery fluid model through a porous medium. Alex Eng J. 2016;55:1017–23.

    Google Scholar 

  55. Hayat T, Khan AA, Bibi F, Farooq S. Activation energy and non-Darcy resistance in magneto peristalsis of Jeffery material. J Phys Chem Sol. 2019;129:155–61.

    CAS  Google Scholar 

  56. Ali A, Shah Z, Mumraiz S, Kumam P. Entropy generation on MHD peristaltic flow of Cu–water nanofluid with slip conditions. Heat Transf Asian Res. 2019;48:4301–19.

    Google Scholar 

  57. Ellahi R, Hussain F, Ishtiqa F, Hussain A. Peristaltic transport of Jeffery fluid in a rectangular duct through a porous medium under the effect of partial slip: an application to upgrade industrial sieves/filters. Pramana J Phys. 2019. https://doi.org/10.1007/s12043-019-1781-8.

    Article  Google Scholar 

  58. Farooq S, Khan MI, Waqas M, Alsaedi A. Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J Mol Liq. 2019;285:314–22.

    CAS  Google Scholar 

  59. Abo-Elkhair RE, Mekheimer KS, Moawed MA. Combine impacts of Electrokinetic variable viscosity and partial slip on peristaltic MHD flow through a micro-channel. Iran J Sci Technol Sci. 2019;43:201–12.

    Google Scholar 

  60. Farooq S, Khan MI, Waqas M, Alsaedi A. Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy generation and slip effects. Comput Methods Progr Biomed. 2020;184:105086.

    CAS  Google Scholar 

  61. Cubillo AE, Pecharroman C, Aguilar E, Santaren J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006;41:5208–12.

    Google Scholar 

  62. Nithya A, Mohan SC, Jeganathan K, Jothivenkatachalam K. A potential photocatalytic antimicrobial and anti cancer activity of chitosan–copper nanocomposite. Int J Biol Macromol. 2017;104:1774–82.

    Google Scholar 

  63. Liu K, Lin X, Zhao J. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomed. 2013;8:2509–20.

    Google Scholar 

  64. Ahmed MH, Baghban A, Ghazvini M, Hadipoor M, Ghasempour R, Nazemzadegan MR. An insight into the prediction of TiO2/water nanofluid viscosity through intelligence schemes. J Therm Anal Calorim. 2020;139:2381–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anber Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Saleem, S., Mumraiz, S. et al. Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J Therm Anal Calorim 143, 1985–1996 (2021). https://doi.org/10.1007/s10973-020-09648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09648-1

Keywords

Navigation