Skip to main content
Log in

Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The irreversibility in convective nanofluid flow in the occurrence of a magnetic field (MHD) in a cavity with chamfers is calculated by numerical approach. The nanofluid flow is considered under the impacts of magnetic field and thermal gradient. The continuity, motion and energy equations are solved by applying COMSOL Multiphysics computer package. The impacts of \(({\text{Ha}})\) Hartmann number, \((\gamma )\) elevation of magnetic field, nanoparticle volume fraction, heat transmission and entropy analysis on the flow of nanofluid are discussed. Results reveal that, the impacts of volume fraction and the magnetic force on different irreversibility are significant. Moreover, results indicate the existence of a critical \(({\text{Ha}}_{{\text{c}}} )\) Hartmann number this represents the frontier between the domains where the magnetic field dominates via its intrinsic effect and its extrinsic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic induction (T)

c p :

Specific heat capacity (J kg K−1)

g :

Gravitational acceleration (m s2)

H :

Cavity height (m)

Ha:

Hartmann number

K :

Thermal conductivity (W m1 K1)

Nu:

Nusselt number

p :

Pressure (kg m1 s2)

P :

Dimensionless pressure

Pr:

Prandtl number \(\left( {\Pr = \frac{\nu }{\alpha }} \right)\)

Ra:

Rayleigh number \(\left( {{\text{Ra}} = \frac{{g\beta (T^{\prime}_{{\text{h}}} - T^{\prime}_{{\text{c}}} )H^{3} }}{\nu \alpha }} \right)\)

s gen :

Total dimensional entropy generation

S gen :

Total dimensionless entropy generation

S Ther :

Thermal entropy generation

S Magn :

Magnetic entropy generation

S Visc :

Viscous entropy generation

T′:

Temperature (K)

T :

Dimensionless temperature

T 0 :

Average temperature (K)

u, v :

x and y-Velocity components (m s1)

U, V :

Dimensionless x and y-velocity components

x, y :

Dimensionless coordinates

α :

Thermal diffusivity (m2 s1)

β :

Thermal expansion coefficient (K1)

μ :

Dynamic viscosity (kg m1 s1)

ν :

Kinematic viscosity (m2s1)

ρ :

Density (kg m3)

σ :

Electrical conductivity (Ω1 m1)

Γ:

Inclination angle of magnetic field (°)

\(\psi\) :

The distribution irreversibility ratio

Φ :

Volume fraction (%)

0:

Reference

Avg:

Average

C :

Cold side

H :

Fluid hot side

f:

Fluid

nf:

Nanofluid

s:

Solid

References

  1. Animasaun IL, Ibraheem RO, Mahanthesh B, Babatunde HA. A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin J Phys. 2019;60:676–87.

    CAS  Google Scholar 

  2. Al-Rashed AA, Kolsi L, Hussein AK, Hassen W, Aichouni M, Borjini MN. Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls. Case Stud Therm Eng. 2017;10:100–10.

    Google Scholar 

  3. Rahimi A, Kasaeipoor A, Malekshah EH, Palizian M, Kolsi L. Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm Sci Eng Progress. 2018;5:372–87.

    Google Scholar 

  4. Oztop HF, Kolsi L, Alghamdi A, Abu-Hamdeh N, Borjini MN, Aissia HB. Numerical analysis of entropy generation due to natural convection in three-dimensional partially open enclosures. J Taiwan Inst Chem Eng. 2017;75:131–40.

    CAS  Google Scholar 

  5. Al-Rashed AA, Kolsi L, Kalidasan K, Malekshah EH, Borjini MN, Kanna PR. Second law analysis of natural convection in a CNT-water nanofluid filled inclined 3D cavity with incorporated Ahmed body. Int J Mech Sci. 2017;130:399–415.

    Google Scholar 

  6. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  7. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  8. Ahmed SE, Hussein AK, Mohammed HA, Sivasankaran S. Boundary layer flow and heat transfer due to permeable stretching tube in the presence of heat source/sink utilizing nanofluids. Appl Math Comput. 2014;238:149–62.

    Google Scholar 

  9. Kolsi L, Hussein AK, Borjini MN, Mohammed HA, Aïssia HB. Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with water-Al2O3 nanofluid. Arab J Sci Eng. 2014;39(11):7483–93.

    CAS  Google Scholar 

  10. Chand R, Rana GC, Hussein AK. Effect of suspended particles on the onset of thermal convection in a nanofluid layer for more realistic boundary conditions. Int J Fluid Mech Res. 2015;42(5):375–90.

    Google Scholar 

  11. Hussein AK, Mustafa AW. Natural convection in fully open parallelogrammic cavity filled with Cu–water nanofluid and heated locally from its bottom wall. Thermal Sci Eng Progress. 2017;1:66–77.

    Google Scholar 

  12. Chand R, Rana GC, Hussein AK. On the onsetof thermal instability in a low Prandtl number nanofluid layer in a porous medium. J Appl Fluid Mech. 2015;8(2):265–72.

    Google Scholar 

  13. Kamel MS, Lezsovits F, Hussein AK. Experimental studies of flow boiling heat transfer by using nanofluids. J Therm Anal Calorim. 2019;138(6):4019–43.

    CAS  Google Scholar 

  14. Al-Rashed AA, Kalidasan K, Kolsi L, Borjini MN, Kanna PR. Three-dimensional natural convection of CNT-water nanofluid confined in an inclined enclosure with Ahmed body. J Thermal Sci Technol. 2017;12(1):JTST0002.

    Google Scholar 

  15. Mahmoudi A, Mejri I, Abbassi MA, Omri A. Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder Technol. 2014;256:257–71.

    CAS  Google Scholar 

  16. Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ. Numerical study of magnetic field effect on nano-fluid forced convection in a channel. J Magn Magn Mater. 2015;374:11–7.

    CAS  Google Scholar 

  17. Mehrez Z, El Cafsi A, Belghith A, Le Quéré P. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. J Magn Magn Mater. 2015;374:214–24.

    CAS  Google Scholar 

  18. Das S, Jana RN. Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng J. 2014;5(2):575–84.

    Google Scholar 

  19. Rahman MM, Öztop HF, Saidur R, Mekhilef S, Al-Salem K. Finite element solution of MHD mixed convection in a channel with a fully or partially heated cavity. Comput Fluids. 2013;79:53–64.

    Google Scholar 

  20. Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int J Therm Sci. 2012;58:130–42.

    CAS  Google Scholar 

  21. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2020;16:1–20.

    Google Scholar 

  22. Kolsi L, Alrashed AA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–188.

    CAS  Google Scholar 

  23. Hussein AK, Ashorynejad HR, Shikholeslami M, Sivasankaran S. Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nucl Eng Des. 2014;268:10–7.

    CAS  Google Scholar 

  24. Wakif A, Boulahia Z, Sehaqui R. Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 2017;7:2134–52.

    Google Scholar 

  25. Zaib A, Khan U, Wakif A, Zaydan M. Numerical Entropic Analysis of Mixed MHD convective flows from a non-isothermal vertical flat plate for radiative tangent hyperbolic blood biofluids conveying magnetite ferroparticles: dual similarity solutions. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04393-x.

    Article  Google Scholar 

  26. Wakif A, Boulahia Z, Mishra SR, Rashidi MM, Sehaqui R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur Phys J Plus. 2018;133(5):181.

    Google Scholar 

  27. Al-Rashed AA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, Borjini MN. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E. 2018;99:294–303.

    CAS  Google Scholar 

  28. ​Farhan M, Omar Z, Mebarek-Oudina F, Raza J, Shah Z, Choudhari RV, Makinde OD. Implementation of one step one hybrid block method on nonlinear equation of the circular sector oscillator. Comput Math Mode. 2020;31(1):116–32. https://doi.org/10.1007/s10598-020-09480-0

    Article  Google Scholar 

  29. Al-Rashed AA, Kalidasan K, Kolsi L, Aydi A, Malekshah EH, Hussein AK, Kanna PR. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liq. 2018;252:454–68.

    CAS  Google Scholar 

  30. Raza J, Mebarek-Oudina F, Chamkha AJ. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip Model Mater Struct. 2019;15(4):737–57.

    CAS  Google Scholar 

  31. Mebarek-Oudina F. Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng Sci Technol. 2017;20(4):1324–33.

    Google Scholar 

  32. Raza J, Farooq M, Mebarek-Oudina F, Mahanthesh B. Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet. Multidiscip Model Mater Struct. 2019;15(5):913–31.

    CAS  Google Scholar 

  33. Raza J, Mebarek-Oudina F, Mahanthesh B. Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscip Model Mater Struct. 2019;15(5):871–94.

    CAS  Google Scholar 

  34. Mebarek-Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer. 2019;48(1):135–47.

    Google Scholar 

  35. Reza J, Mebarek-Oudina F, Makinde OD. MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula. Defect Diffus Forum. 2018;387:51–62.

    Google Scholar 

  36. Mebarek-Oudina F, Bessaïh R. Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources. Thermophys Aeromech. 2019;26(3):325–34.

    Google Scholar 

  37. Mahanthesh B, Lorenzini G, Mebarek-Oudina F, Animasaun IL. Significance of exponential space-and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08985-0.

    Article  Google Scholar 

  38. Gourari S, Mebarek-Oudina F, Hussein AK, Kolsi L, Hassen W, Younis O. Numerical study of natural convection between two coaxial inclined cylinders. Int J Heat Technol. 2019;37(3):779–86.

    Google Scholar 

  39. Laouira H, Mebarek-Oudina F, Hussein AK, Kolsi L, Merah A, Younis O. Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transfer. 2020;49(1):406–23. https://doi.org/10.1002/htj.21618.

    Article  Google Scholar 

  40. Alkasassbeh M, Omar Z, Mebarek-Oudina F, Reza J, Chamkha AJ. Heat Transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transfer. 2019;48(4):1224–44.

    Google Scholar 

  41. Mahian O, Kianifar A, Kleinstreuer C, Moh’d AAN, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transfer. 2013;65:514–32.

    CAS  Google Scholar 

  42. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford university Press; 1904. p. 435–441.

    Google Scholar 

  43. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer. 1999;121:280–9.

    CAS  Google Scholar 

  44. Woods LC. The thermodynamics of fluid system. Oxford: Oxford University Press; 1975.

    Google Scholar 

  45. Oztop HF, Abu-Nada E. Numerical study in partially heated rectangular enclosure filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Mebarek-Oudina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, S., Mebarek-Oudina, F., Assia, A. et al. Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. J Therm Anal Calorim 143, 2203–2214 (2021). https://doi.org/10.1007/s10973-020-09662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09662-3

Keywords

Navigation