Skip to main content
Log in

A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The emergence of nanofluids as high-performance thermal transport media has drawn great research attention in the field of heat transfer. Owning to the huge importance of natural convection applications in environmental, agricultural, manufacturing, electronics, aviation, power plants, and industrial processes, heat transfer and flow characteristics of these special fluids in various cavities have been extensively researched. This review paper has paid serious attention to the benefits of controlling the natural convection heat transfer and flow performance of nanofluids in square cavities using magnetic field sources in addition to the aspect ratio, porous media, cavity and magnetic field inclination, hybrid nanofluids, etc. The influence of several variables such as heat distribution methods, thermal and concentration boundary conditions, governing parameters, magnetic field types, numerical schemes, thermophysical correlation types, nanofluid types, slip conditions, Brownian motion, and thermophoresis on the magnetohydrodynamic (MHD) natural convection behaviours of nanofluids in square cavities has been reviewed. The paper focused on the application of numerical and experimental methods to hydromagnetic behaviours of nanofluids in square-shaped enclosures. The concept of bioconvection, bio-nanofluid (green nanofluid), ionic nanofluid, and hybrid nanofluid has also been reviewed in relation to natural convection for the first time. Special cases of MHD natural convection in cavities involving micropolar and hybrid nanofluids are also presented herein. Convective heat transfer in square cavities has been demonstrated to be altered due to the presence of magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mahmoodi M. Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci. 2011;50:1731–40. https://doi.org/10.1016/j.ijthermalsci.2011.04.009.

    Article  CAS  Google Scholar 

  2. Javadi MA, Hoseinzadeh S, Ghasemiasl R, Heyns PS, Chamkha AJ. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. J Therm Anal Calorim. 2020;139:519–25. https://doi.org/10.1007/s10973-019-08399-y.

    Article  CAS  Google Scholar 

  3. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39. https://doi.org/10.1016/j.rser.2015.10.042.

    Article  CAS  Google Scholar 

  4. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2016;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.

    Article  Google Scholar 

  5. Sadeghi HM, Babayan M, Chamkha A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int J Heat Mass Transf. 2020;147:118970. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118970.

    Article  CAS  Google Scholar 

  6. Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transf. 2019;33:698–704. https://doi.org/10.2514/1.T5583.

    Article  CAS  Google Scholar 

  7. Hoseinzadeh S, Heyns PS, Chamkha AJ, Shirkhani A. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J Therm Anal Calorim. 2019;138:727–35. https://doi.org/10.1007/s10973-019-08203-x.

    Article  CAS  Google Scholar 

  8. Ghalambaz M, Mehryan SAM, Muneer AI, Chamkha AJ, Wen D. Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-12-2018-0826.

    Article  Google Scholar 

  9. Syam Sundar L, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35. https://doi.org/10.1016/j.rser.2012.11.041.

    Article  CAS  Google Scholar 

  10. Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluids: is the controversy over? J Nanoparticle Res. 2008;10:1089–97. https://doi.org/10.1007/s11051-007-9352-1.

    Article  Google Scholar 

  11. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64. https://doi.org/10.1016/S0142-727X(99)00067-3.

    Article  CAS  Google Scholar 

  12. Chiam HW, Azmi WH, Adam NM, Ari MKAM. Numerical study of nanofluid heat transfer for different tube geometries—a comprehensive review on performance. Int Commun Heat Mass Transf. 2017;86:60–70. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.019.

    Article  CAS  Google Scholar 

  13. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128:240–50. https://doi.org/10.1115/1.2150834.

    Article  Google Scholar 

  14. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7:227–33. https://doi.org/10.2963/jjtp.7.227.

    Article  CAS  Google Scholar 

  15. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20. https://doi.org/10.1063/1.1341218.

    Article  CAS  Google Scholar 

  16. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53. https://doi.org/10.1016/j.rser.2016.11.111.

    Article  CAS  Google Scholar 

  17. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo. 1995;66:99–105. https://doi.org/10.1115/1.1532008.

    Article  CAS  Google Scholar 

  18. Lee S, Choi SU-S, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer. 1999;121:280. https://doi.org/10.1115/1.2825978.

    Article  CAS  Google Scholar 

  19. Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci. 2005;30:109–16. https://doi.org/10.1016/j.expthermflusci.2005.03.021.

    Article  CAS  Google Scholar 

  20. Kumar MS, Vasu V, Gopal AV. Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluids. J Taiwan Inst Chem Eng. 2016;66:321–7. https://doi.org/10.1016/j.jtice.2016.05.033.

    Article  CAS  Google Scholar 

  21. Adio SA, Mehrabi M, Sharifpur M, Meyer JP. Experimental investigation and model development for effective viscosity of MgO-ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int Commun Heat Mass Transf. 2016;72:71–83. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.005.

    Article  CAS  Google Scholar 

  22. Nguyen MT, Aly AM, Lee SW. Natural convection in a non-darcy porous cavity filled with Cu–water nanofluid using the characteristic-based split procedure in finite-element method. Numer Heat Transf Part A Appl. 2015;67:224–47. https://doi.org/10.1080/10407782.2014.923225.

    Article  CAS  Google Scholar 

  23. Yang L, Xu J, Du K, Zhang X. Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol. 2017;317:348–69. https://doi.org/10.1016/j.powtec.2017.04.061.

    Article  CAS  Google Scholar 

  24. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:1–4. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

  25. Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK. Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids. J Mol Liq. 2011;163:27–32. https://doi.org/10.1016/j.molliq.2011.07.007.

    Article  CAS  Google Scholar 

  26. Sharifpur M, Adio SA, Meyer JP. Experimental investigation and model development for effective viscosity of Al2O3-glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf. 2015;68:208–19. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.002.

    Article  CAS  Google Scholar 

  27. Yang J-C, Li F-C, Zhou W-W, He Y-R, Jiang B-C. Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int J Heat Mass Transf. 2012;55:3160–6. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052.

    Article  CAS  Google Scholar 

  28. Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5. https://doi.org/10.1016/j.apenergy.2013.04.068.

    Article  CAS  Google Scholar 

  29. Zyla G, Fal J. Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride-ethylene glycol (AlN-EG) nanofluids. Thermochim Acta. 2016;637:11–6. https://doi.org/10.1016/j.tca.2016.05.006.

    Article  CAS  Google Scholar 

  30. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402. https://doi.org/10.1016/j.expthermflusci.2007.05.001.

    Article  CAS  Google Scholar 

  31. Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80. https://doi.org/10.1016/j.apenergy.2011.12.101.

    Article  CAS  Google Scholar 

  32. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7. https://doi.org/10.1016/j.ijthermalsci.2013.04.013.

    Article  CAS  Google Scholar 

  33. Żyła G, Fal J. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies. Thermochim Acta. 2017;650:106–13. https://doi.org/10.1016/j.tca.2017.02.001.

    Article  CAS  Google Scholar 

  34. Chen H, Ding Y, Lapkin A, Fan X. Rheological behaviour of ethylene glycol-titanate nanotube nanofluids. J Nanoparticle Res. 2009;11:1513–20. https://doi.org/10.1007/s11051-009-9599-9.

    Article  CAS  Google Scholar 

  35. Hong RY, Ren ZQ, Han YP, Li HZ, Zheng Y, Ding J. Rheological properties of water-based ferrofluids. Chem Eng Sci. 2007;62:5912–24. https://doi.org/10.1016/j.ces.2007.06.010.

    Article  CAS  Google Scholar 

  36. Hosseini SM, Ghasemi E, Fazlali A, Henneke DE. The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids. J Nanoparticle Res. 2012. https://doi.org/10.1007/s11051-012-0858-9.

    Article  Google Scholar 

  37. Hosseini SM, Fazlali A, Ghasemi E, Moghaddam HA, Salehi M. Rheological properties of a γ-Fe2O3 paraffin-based ferrofluid. J Magn Magn Mater. 2010;322:3792–6. https://doi.org/10.1016/j.jmmm.2010.08.003.

    Article  CAS  Google Scholar 

  38. Ilyas SU, Pendyala R, Narahari M. Rheological behavior of mechanically stabilized and surfactant-free MWCNT-thermal oil-based nanofluids. Int Commun Heat Mass Transf. 2017;87:250–5. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.015.

    Article  CAS  Google Scholar 

  39. Hezaveh H, Fazlali A, Noshadi I. Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. J Taiwan Inst Chem Eng. 2012;43:159–64. https://doi.org/10.1016/j.jtice.2011.07.003.

    Article  CAS  Google Scholar 

  40. Pastoriza-Gallego M, Lugo L, Legido J, Piñeiro MM. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Res Lett. 2011;6:560. https://doi.org/10.1186/1556-276X-6-560.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fal J, Barylyak A, Besaha K, Bobitski YV, Cholewa M, Zawlik I, et al. Experimental investigation of electrical conductivity and permittivity of SC-TiO2-EG nanofluids. Nanoscale Res Lett. 2016;11:1–9. https://doi.org/10.1186/s11671-016-1590-7.

    Article  CAS  Google Scholar 

  42. Menbari A, Alemrajabi AA, Ghayeb Y. Investigation on the stability, viscosity and extinction coefficient of CuO-Al2O3/water binary mixture nanofluid. Exp Therm Fluid Sci. 2016;74:122–9. https://doi.org/10.1016/j.expthermflusci.2015.11.025.

    Article  CAS  Google Scholar 

  43. Huminic G, Huminic A, Dumitrache F, Fleaca C, Morjan I. Experimental study of thermo-physical properties of nanofluids based on γ-Fe2O3 nanoparticles for heat transfer applications. Heat Transf Eng. 2016. https://doi.org/10.1080/01457632.2016.1255090.

    Article  Google Scholar 

  44. Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.017.

    Article  CAS  Google Scholar 

  45. Hosseini SM, Alavianmehr MM. New version of Tammann-Tait equation: application to nanofluids. J Mol Liq. 2016;220:404–8. https://doi.org/10.1016/j.molliq.2016.04.088.

    Article  CAS  Google Scholar 

  46. Nabati Shoghl S, Jamali J, Keshavarz Moraveji M. Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp Therm Fluid Sci. 2016;74:339–46. https://doi.org/10.1016/j.expthermflusci.2016.01.004.

    Article  CAS  Google Scholar 

  47. Hentschke R. On the specific heat capacity enhancement in nanofluids. Nanoscale Res Lett. 2016;11:88. https://doi.org/10.1186/s11671-015-1188-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hadadian M, Goharshadi EK, Youssefi A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanoparticle Res. 2014;16:1–17. https://doi.org/10.1007/s11051-014-2788-1.

    Article  CAS  Google Scholar 

  49. Wang XJ, Zhu DS, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett. 2009;470:107–11. https://doi.org/10.1016/j.cplett.2009.01.035.

    Article  CAS  Google Scholar 

  50. Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11:630–49. https://doi.org/10.1080/17458080.2015.1107194.

    Article  CAS  Google Scholar 

  51. Adio SA, Sharifpur M, Meyer JP. Factors affecting the pH and electrical conductivity of MgO-ethylene glycol nanofluids. Bull Mater Sci. 2015;38:1345–57. https://doi.org/10.1007/s12034-015-1020-y.

    Article  CAS  Google Scholar 

  52. Adio SA, Sharifpur M, Meyer JP. Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Transf Eng. 2015;36:1241–51. https://doi.org/10.1080/01457632.2015.994971.

    Article  CAS  Google Scholar 

  53. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12:227–34. https://doi.org/10.1016/j.hbrcj.2014.12.001.

    Article  Google Scholar 

  54. Azizian R, Doroodchi E, Moghtaderi B. Influence of controlled aggregation on thermal conductivity of nanofluids. J Heat Transfer. 2015;138:1–6. https://doi.org/10.1115/1.4031730.

    Article  CAS  Google Scholar 

  55. Sharifpur M, Yousefi S, Meyer JP. A new model for density of nanofluids including nanolayer. Int Commun Heat Mass Transf. 2016;78:168–74. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.010.

    Article  CAS  Google Scholar 

  56. Shima PD, Philip J, Raj B. Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl Phys Lett. 2009;95:1–4. https://doi.org/10.1063/1.3238551.

    Article  CAS  Google Scholar 

  57. Shima PD, Philip J. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C. 2011;115:20097–104. https://doi.org/10.1021/jp204827q.

    Article  CAS  Google Scholar 

  58. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15. https://doi.org/10.1007/s12206-016-0135-4.

    Article  Google Scholar 

  59. Karimi A, Goharkhah M, Ashjaee M, Shafii MB. Thermal conductivity of Fe2O3 and Fe3O4 magnetic nanofluids under the influence of magnetic field. Int J Thermophys. 2015;36:2720–39. https://doi.org/10.1007/s10765-015-1977-1.

    Article  CAS  Google Scholar 

  60. Patel J, Parekh K, Upadhyay RV. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields. J Appl Phys. 2015;117:1–8. https://doi.org/10.1063/1.4923187.

    Article  CAS  Google Scholar 

  61. Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM. Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. J Appl Phys. 2011;110:1–9. https://doi.org/10.1063/1.3603012.

    Article  CAS  Google Scholar 

  62. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81. https://doi.org/10.1016/j.molliq.2017.05.121.

    Article  CAS  Google Scholar 

  63. Rejvani M, Saedodin S, Vahedi SM, Wongwises S, Chamkha AJ. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. J Therm Anal Calorim. 2019;138:1823–39. https://doi.org/10.1007/s10973-019-08225-5.

    Article  CAS  Google Scholar 

  64. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7. https://doi.org/10.1016/j.expthermflusci.2016.03.015.

    Article  CAS  Google Scholar 

  65. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surfaces A Physicochem Eng Asp. 2011;388:41–8. https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  CAS  Google Scholar 

  66. Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 2012;231:18–20. https://doi.org/10.1016/j.powtec.2012.07.028.

    Article  CAS  Google Scholar 

  67. Sarbolookzadeh Harandi S, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;76:171–7. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.029.

    Article  CAS  Google Scholar 

  68. Qing SH, Rashmi W, Khalid M, Gupta TCSM, Nabipoor M, Hajibeigy MT. Thermal conductivity and electrical properties of hybrid SiO2-graphene naphthenic mineral oil nanofluid as potential transformer oil. Mater Res Express. 2017;4:015504. https://doi.org/10.1088/2053-1591/aa550e.

    Article  CAS  Google Scholar 

  69. Wei B, Zou C, Yuan X, Li X. Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. Int J Heat Mass Transf. 2017;107:281–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.044.

    Article  CAS  Google Scholar 

  70. Syam Sundar L, Singh MK, Ferro MC, Sousa ACM. Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass Transf. 2017;84:1–10. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.001.

    Article  CAS  Google Scholar 

  71. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina – ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09372-w.

    Article  Google Scholar 

  72. Huang W, Wang X. Study on the properties and stability of ionic liquid-based ferrofluids. Colloid Polym Sci. 2012;290:1695–702. https://doi.org/10.1007/s00396-012-2773-0.

    Article  CAS  Google Scholar 

  73. Francìa JMP, Vieira SIC, Lourencìo MJV, Murshed SMS, De Nieto Castro CA. Thermal conductivity of [C4mim][(CF3SO2)2 N] and [C2mim][EtSO4] and their ionanofluids with carbon nanotubes: experiment and theory. J Chem Eng Data. 2013;58:467–76. https://doi.org/10.1021/je301183r.

    Article  CAS  Google Scholar 

  74. De Nieto Castro CA, Murshed SMS, Lourenço MJV, Santos FJV, Lopes MLM, França JMP. Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids. Int J Therm Sci. 2012;62:34–9. https://doi.org/10.1016/j.ijthermalsci.2012.03.010.

    Article  CAS  Google Scholar 

  75. Ribeiro APC, Vieira SIC, França JM, Queiros CS, Langa E, Lourenço MJV, et al. Thermal properties of ionic liquids and ionanofluids. Intech. 2011;55:653–61. https://doi.org/10.5772/13920.

    Article  Google Scholar 

  76. Rodríguez-Palmeiro I, Rodríguez-Cabo B, Rodil E, Arce A, Saiz-Jabardo JM, Soto A. Synthesis and characterization of highly concentrated AgI–[P6,6,6,14]Cl ionanofluids. J Nanoparticle Res. 2013;15:1881. https://doi.org/10.1007/s11051-013-1881-1.

    Article  CAS  Google Scholar 

  77. Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bioglycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf. 2016;73:75–83. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.006.

    Article  CAS  Google Scholar 

  78. Kallamu UM, Ibrahim JS, Sharifpur M, Meyer JP. Experimental investigation on viscosity of nanofluids prepared from banana fibre-nanoparticles. In: 12th international conference on heat transfer, fluid mechanics and thermodynamics 2016:1713–1718.

  79. Sharifpur M, Solomon AB, Meyer JP, Ibrahim JS, Immanuel B. Thermal conductivity and viscosity of mango bark/water nanofluids. In: 13th international conference on heat transfer, fluid mechanics and thermodynamics 2017.

  80. Awua JT, Ibrahim JS, Kwaghger A, Sharifpur M, Meyer JP. Investigation into thermal conductivity of palm kernel fibre nanofluids with mixture of ethylene glycol/water as base fluid. 12th international conference on heat transfer, fluid mechanics and thermodynamics 2016:1719–1725.

  81. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  82. Pinto RV, Fiorelli FAS. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng. 2016;108:720–39. https://doi.org/10.1016/j.applthermaleng.2016.07.147.

    Article  CAS  Google Scholar 

  83. Das D, Roy M, Basak T. Studies on natural convection within enclosures of various (non-square) shapes - A review. Int J Heat Mass Transf. 2016;106:356–406. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.034.

    Article  CAS  Google Scholar 

  84. Ternik P. Conduction and convection heat transfer characteristics of water–Au nanofluid in a cubic enclosure with differentially heated side walls. Int J Heat Mass Transf. 2015;80:368–75. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.041.

    Article  CAS  Google Scholar 

  85. Shashikumar NS, Gireesha BJ, Mahanthesh B, Prasannakumara BC, Chamkha Ali J. Entropy generation analysis of magneto-nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slips and convective conditions. Int J Numer Methods Heat & Fluid Flow. 2019;29:3638–58. https://doi.org/10.1108/HFF-06-2018-0301.

    Article  Google Scholar 

  86. Nasrin R, Alim MA, Chamkha AJ. Numerical simulation of non-darcy forced convection through a channel with nonuniform heat flux in an open cavity using nanofluid. Numer Heat Transf Part A Appl. 2013;64:820–40. https://doi.org/10.1080/10407782.2013.798536.

    Article  CAS  Google Scholar 

  87. Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alexandria Eng J. 2019;59:129–48. https://doi.org/10.1016/j.aej.2019.12.017.

    Article  Google Scholar 

  88. Selimefendigil F, Öztop HF, Chamkha AJ. Mixed convection of pulsating ferrofluid flow over a backward-facing step. Iran J Sci Technol - Trans Mech Eng. 2019;43:593–612. https://doi.org/10.1007/s40997-018-0238-x.

    Article  Google Scholar 

  89. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939–61. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.136.

    Article  CAS  Google Scholar 

  90. Selimefendigil F, Öztop HF, Chamkha AJ. Analysis of mixed convection of nano fluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int Commun Heat Mass Transf. 2017;87:40–51. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.015.

    Article  CAS  Google Scholar 

  91. Selimefendigil F, Öztop HF, Chamkha AJ. Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall. Eur J Mech B/Fluids. 2017;61:77–85. https://doi.org/10.1016/j.euromechflu.2016.03.009.

    Article  Google Scholar 

  92. Rashad AM, Ismael MA, Chamkha AJ, Mansour MA. MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip. J Taiwan Inst Chem Eng. 2016;68:173–86. https://doi.org/10.1016/j.jtice.2016.08.033.

    Article  CAS  Google Scholar 

  93. Ismael MA, Mansour MA, Chamkha AJ, Rashad AM. Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field. J Magn Magn Mater. 2016;416:25–36. https://doi.org/10.1016/j.jmmm.2016.05.006.

    Article  CAS  Google Scholar 

  94. Selimefendigil F, Öztop HF, Chamkha AJ. MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains. J Magn Magn Mater. 2016;406:266–81. https://doi.org/10.1016/j.jmmm.2016.01.039.

    Article  CAS  Google Scholar 

  95. Abu-Nada E, Chamkha AJ. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. Int Commun Heat Mass Transf. 2014;57:36–47. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.013.

    Article  CAS  Google Scholar 

  96. Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Appl. 2016;69:1186–200. https://doi.org/10.1080/10407782.2015.1125709.

    Article  CAS  Google Scholar 

  97. Alsabery AI, Gedik E, Chamkha AJ, Hashim I. Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat Mass Transf Und Stoffuebertragung. 2020;56:321–38. https://doi.org/10.1007/s00231-019-02698-8.

    Article  CAS  Google Scholar 

  98. Mehryan SAM, Izadpanahi E, Ghalambaz SAM, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08012-2.

    Article  Google Scholar 

  99. Alsabery AI, Selimefendigil F, Hashim I, Chamkha AJ, Ghalambaz M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int J Heat Mass Transf. 2019;140:331–45. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.003.

    Article  Google Scholar 

  100. Kumar B, Seth GS, Nandkeolyar R, Chamkha AJ. Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int J Therm Sci. 2019;146:106101. https://doi.org/10.1016/j.ijthermalsci.2019.106101.

    Article  CAS  Google Scholar 

  101. Chamkha AJ, Ismael MA. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu – water nanofluid with an aiding or opposing side wall. J Therm Sci Eng Appl. 2017;8:1–12. https://doi.org/10.1115/1.4033211.

    Article  CAS  Google Scholar 

  102. Chamkha AJ, Abu-nada E. Mixed convection flow in single- and double-lid driven square cavities filled with water – Al2O3 nanofluid: effect of viscosity models. Eur J Mech B/Fluids. 2012;36:82–96. https://doi.org/10.1016/j.euromechflu.2012.03.005.

    Article  Google Scholar 

  103. Abu-nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B/Fluids. 2010;29:472–82. https://doi.org/10.1016/j.euromechflu.2010.06.008.

    Article  Google Scholar 

  104. Ismael MA, Abu-nada E, Chamkha AJ. Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater. Int J Mech Sci. 2017;133:42–50. https://doi.org/10.1016/j.ijmecsci.2017.08.029.

    Article  Google Scholar 

  105. Ahmed M, Eslamian M. Natural convection in a differentially-heated square enclosure filled with a nanofluid: significance of the thermophoresis force and slip/drift velocity. Int Commun Heat Mass Transf. 2014;58:1–11. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.008.

    Article  Google Scholar 

  106. Garbadeen ID, Sharifpur M, Slabber JM, Meyer JP. Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int Commun Heat Mass Transf. 2017;88:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.019.

    Article  CAS  Google Scholar 

  107. Safwan IM, Alsabery IA, Chamkha A, Ishak H. Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity. Int J Numer Methods Heat & Fluid Flow. 2019;30:1518–46. https://doi.org/10.1108/HFF-06-2019-0505.

    Article  Google Scholar 

  108. Tayebi T, Chamkha AJ, Djezzar M. Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall. Sci Iran. 2019;26:2770–83. https://doi.org/10.24200/sci.2018.21069.

    Article  Google Scholar 

  109. Ghalambaz M, Tahmasebi A, Chamkha AJ, Wen D. Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: analysis of the element location. Int J Heat Mass Transf. 2019;138:941–60. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.073.

    Article  Google Scholar 

  110. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. J Therm Anal Calorim. 2019;138:1371–94. https://doi.org/10.1007/s10973-019-08249-x.

    Article  CAS  Google Scholar 

  111. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci. 2019;201:247–63. https://doi.org/10.1016/j.ces.2019.03.006.

    Article  CAS  Google Scholar 

  112. Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int J Heat Mass Transf. 2019;138:738–49. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037.

    Article  Google Scholar 

  113. Ayoubloo KA, Ghalambaz M, Armaghani T, Noghrehabadi A, Chamkha AJ. Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. Int J Numer Methods Heat & Fluid Flow. 2019;30:1096–114. https://doi.org/10.1108/HFF-06-2019-0464.

    Article  Google Scholar 

  114. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effect of nonhomogeneous nanofluid model on transient natural convection in a non-Darcy porous cavity containing an inner solid body. Int Commun Heat Mass Transf. 2020;110:104442. https://doi.org/10.1016/j.icheatmasstransfer.2019.104442.

    Article  Google Scholar 

  115. Sathiyamoorthy M, Chamkha AJ. Analysis of natural convection in a square cavity with a thin partition for linearly heated side walls. Int J Numer Methods Heat Fluid Flow. 2014;24:1057–72. https://doi.org/10.1108/HFF-02-2012-0050.

    Article  Google Scholar 

  116. Motlagh SY, Taghizadeh S, Soltanipour H. Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Adv Powder Technol. 2016;27:2526–40. https://doi.org/10.1016/j.apt.2016.09.016.

    Article  CAS  Google Scholar 

  117. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97. https://doi.org/10.1016/j.ijmecsci.2017.09.045.

    Article  Google Scholar 

  118. Ben-Cheikh N, Chamkha AJ, Ben-Beya B, Lili T. Natural convection of water-based nanofluids in a square cavity with partially heated of the bottom wall. J. Mod. Phys. 2013;4:147–59. https://doi.org/10.1016/j.proeng.2017.08.168.

    Article  CAS  Google Scholar 

  119. Doostani A, Ghalambaz M, Chamkha AJ. MHD natural convection phase - change heat transfer in a cavity: analysis of the magnetic field effect. J Brazilian Soc Mech Sci Eng. 2017. https://doi.org/10.1007/s40430-017-0722-z.

    Article  Google Scholar 

  120. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28:385–97. https://doi.org/10.1016/j.apt.2016.10.009.

    Article  CAS  Google Scholar 

  121. Ghalambaz M, Doostanidezfuli A, Zargartalebi H, Chamkha AJ. MHD phase change heat transfer in an inclined enclosure: effect of a magnetic field and cavity inclination. Numer Heat Transf Part A Appl. 2017;71:91–109. https://doi.org/10.1080/10407782.2016.1244397.

    Article  CAS  Google Scholar 

  122. Chamkha A, Ismael M, Kasaeipoor A, Armaghani T. Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy. 2016;18:1–18. https://doi.org/10.3390/e18020050.

    Article  CAS  Google Scholar 

  123. Maatki C, Kolsi L, Oztop HF, Chamkha A, Borjini MN, Aissia Ben H, et al. Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture. Int Commun Heat Mass Transf. 2013;49:86–95. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.019.

    Article  Google Scholar 

  124. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835–50. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.031.

    Article  Google Scholar 

  125. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technol. 2017;308:214–34. https://doi.org/10.1016/j.powtec.2016.12.025.

    Article  CAS  Google Scholar 

  126. Alsabery AI, Chamkha AJ, Saleh H, Hashim I, Chanane B. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Phys A Stat Mech Its Appl. 2017;470:20–38. https://doi.org/10.1016/j.physa.2016.11.107.

    Article  CAS  Google Scholar 

  127. Motlagh SY, Soltanipour H. Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310–20. https://doi.org/10.1016/j.ijthermalsci.2016.08.022.

    Article  CAS  Google Scholar 

  128. Abu-Nada E, Chamkha AJ. Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid. Int J Therm Sci. 2010;49:2339–52. https://doi.org/10.1016/j.ijthermalsci.2010.07.006.

    Article  CAS  Google Scholar 

  129. Basak T, Chamkha AJ. Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int J Heat Mass Transf. 2012;55:5526–43. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.025.

    Article  CAS  Google Scholar 

  130. Sathiyamoorthy M, Chamkha AJ. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int J Numer Methods Heat Fluid Flow. 2012;22:677–98. https://doi.org/10.1108/09615531211231307.

    Article  CAS  Google Scholar 

  131. Selimefendigil F, Öztop HF, Al-Salem K. Natural convection of ferrofluids in partially heated square enclosures. J Magn Magn Mater. 2014;372:122–33. https://doi.org/10.1016/j.jmmm.2014.07.058.

    Article  CAS  Google Scholar 

  132. Sourtiji E, Ganji DD, Gorji-Bandpy M, Seyyedi SM. Numerical study of periodic natural convection in a nanofluid-filled enclosure due to transitional temperature of heat source. Powder Technol. 2014;259:65–73. https://doi.org/10.1016/j.powtec.2014.03.055.

    Article  CAS  Google Scholar 

  133. Mahmoodi M, Hashemi SM. Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int J Therm Sci. 2012;55:76–89. https://doi.org/10.1016/j.ijthermalsci.2012.01.002.

    Article  CAS  Google Scholar 

  134. Rahman MM, Saha S, Mojumder S, Mekhilef S, Saidur R. Numerical simulation of unsteady heat transfer in a half-moon shape enclosure with variable thermal boundary condition for different nanofluids. Numer Heat Transf Part B Fundam. 2014;65:282–301. https://doi.org/10.1080/10407790.2013.849990.

    Article  CAS  Google Scholar 

  135. Parvin S, Alim MA, Hossain NF. Prandtl number effect on cooling performance of a heated cylinder in an enclosure filled with nanofluid. Int Commun Heat Mass Transf. 2012;39:1220–5. https://doi.org/10.1016/j.icheatmasstransfer.2012.06.006.

    Article  CAS  Google Scholar 

  136. Nasrin R, Parvin S. Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–Cu nanofluid. Int Commun Heat Mass Transf. 2012;39:270–4. https://doi.org/10.1016/j.icheatmasstransfer.2011.11.004.

    Article  CAS  Google Scholar 

  137. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53. https://doi.org/10.1016/S0017-9310(03)00156-X.

    Article  CAS  Google Scholar 

  138. Brusly Solomon A, van Rooyen J, Rencken M, Sharifpur M, Meyer JP. Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with Al2O3/water nanofluids. Int Commun Heat Mass Transf. 2017;88:254–61. https://doi.org/10.1016/j.icheatmasstransfer.2017.09.007.

    Article  CAS  Google Scholar 

  139. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84. https://doi.org/10.1016/j.jtice.2017.01.006.

    Article  CAS  Google Scholar 

  140. Ismael MA, Armaghani T, Chamkha AJ. Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J Taiwan Inst Chem Eng. 2016;59:138–51. https://doi.org/10.1016/j.jtice.2015.09.012.

    Article  CAS  Google Scholar 

  141. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51. https://doi.org/10.1016/j.ijthermalsci.2012.12.002.

    Article  CAS  Google Scholar 

  142. Alsabery AI, Chamkha AJ, Hussain SH, Saleh H, Hashim I. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26:1230–44. https://doi.org/10.1016/j.apt.2015.06.005.

    Article  CAS  Google Scholar 

  143. Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha AJ. Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer Heat Transf Part A Appl. 2016;70:432–45. https://doi.org/10.1080/10407782.2016.1173483.

    Article  CAS  Google Scholar 

  144. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A Appl. 2014;65:1089–113. https://doi.org/10.1080/10407782.2013.851560.

    Article  CAS  Google Scholar 

  145. Kalidasan K, Rajesh Kanna P. Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond - cobalt oxide/water. Int Commun Heat Mass Transf. 2017;81:64–71. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.005.

    Article  CAS  Google Scholar 

  146. Sun Q, Pop I. Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int J Therm Sci. 2011;50:2141–53. https://doi.org/10.1016/j.ijthermalsci.2011.06.005.

    Article  CAS  Google Scholar 

  147. Brusly Solomon A, Sharifpur M, Ottermann T, Grobler C, Joubert M, Meyer JP. Natural convection enhancement in a porous cavity with Al2O3-ethylene glycol/water nanofluids. Int J Heat Mass Transf. 2017;108:1324–34. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.009.

    Article  CAS  Google Scholar 

  148. Sheikholeslami M, Seyednezhad M. Lattice Boltzmann method simulation for CuO-water nanofluid flow in a porous enclosure with hot obstacle. J Mol Liq. 2017;243:249–56. https://doi.org/10.1016/j.molliq.2017.08.038.

    Article  CAS  Google Scholar 

  149. Kolsi L, Oztop HF, Alghamdi A, Abu-Hamdeh N, Borjini MN, Aissia Ben H. A computational work on a three dimensional analysis of natural convection and entropy generation in nanofluid filled enclosures with triangular solid insert at the corners. J Mol Liq. 2016;218:260–74. https://doi.org/10.1016/j.molliq.2016.02.083.

    Article  CAS  Google Scholar 

  150. Haddad O, Baïri A, Alilat N, Bauzin JG, Laraqi N. Free convection in ZnO-Water nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device. Int Commun Heat Mass Transf. 2017;87:204–11. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.011.

    Article  CAS  Google Scholar 

  151. Alsabery AI, Chamkha AJ, Saleh H, Chanane B. Darcian natural convection in an inclined trapezoidal cavity partly filled with a porous layer and partly with a nanofluid layer. Sains Malaysiana. 2017;46:803–15.

    Article  CAS  Google Scholar 

  152. Ismael MA, Chamkha AJ. Conjugate Natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media. 2015;18:699–716.

    Article  Google Scholar 

  153. Suganthi KS, Rajan KS. Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017;76:226–55. https://doi.org/10.1016/j.rser.2017.03.043.

    Article  CAS  Google Scholar 

  154. Miroshnichenko IV, Sheremet MA, Pop I. Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source. Int J Mech Sci. 2017;120:182–9. https://doi.org/10.1016/j.ijmecsci.2016.11.028.

    Article  Google Scholar 

  155. Gibanov NS, Sheremet MA, Pop I. Natural convection of micropolar fluid in a wavy differentially heated cavity. J Mol Liq. 2016;221:518–25. https://doi.org/10.1016/j.molliq.2016.06.033.

    Article  CAS  Google Scholar 

  156. Muthtamilselvan M, Periyadurai K, Doh DH. Effect of uniform and nonuniform heat source on natural convection flow of micropolar fluid. Int J Heat Mass Transf. 2017;115:19–34. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.134.

    Article  Google Scholar 

  157. Bourantas GC, Loukopoulos VC. Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf. 2014;68:35–41. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.006.

    Article  CAS  Google Scholar 

  158. Mehryan SAM, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28:2295–305. https://doi.org/10.1016/j.apt.2017.06.011.

    Article  CAS  Google Scholar 

  159. Tayebi T, Chamkha AJ. Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer Heat Transf Part A Appl. 2016;70:1141–56. https://doi.org/10.1080/10407782.2016.1230423.

    Article  CAS  Google Scholar 

  160. Minea AA, El-Maghlany WM. Natural convection heat transfer utilizing ionic nanofluids with temperature-dependent thermophysical properties. Chem Eng Sci. 2017;174:13–24. https://doi.org/10.1016/j.ces.2017.08.028.

    Article  CAS  Google Scholar 

  161. Giwa SO, Sharifpur M, Meyer JP. Heat transfer enhancement of dilute Al2O3-MWCNT water based hybrid nanofluids in a square cavity. In: International conference on heat transfer, vol. 2018, Aug, 2018, p. 5365–5372. https://doi.org/10.1615/ihtc16.hte.023927.

  162. Giwa SO, Sharifpur M, Meyer JP. Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferro fluid in a rectangular cavity. Appl Therm Eng. 2020;170:115004. https://doi.org/10.1016/j.applthermaleng.2020.115004.

    Article  CAS  Google Scholar 

  163. Giwa SO, Sharifpur M, Meyer JP. Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3-MWCNT/water in a differentially heated square cavity. Int J Heat Mass Transf. 2020;148:119072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072.

    Article  CAS  Google Scholar 

  164. Tayebi T, Chamkha AJ. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int J Numer Methods Heat Fluid Flow. 2019;30:1115–36. https://doi.org/10.1108/HFF-04-2019-0350.

    Article  Google Scholar 

  165. Chamkha AJ, Sazegar S, Jamesahar E, Ghalambaz M. Thermal non-equilibrium heat transfer modeling of hybrid nanofluids in a structure composed of the layers of solid and porous media and free nanofluids. Energies. 2019. https://doi.org/10.3390/en12030541.

    Article  Google Scholar 

  166. Hashemi-Tilehnoee M, Dogonchi A, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid - filled incinerator - shaped porous cavity with wavy heater block. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09220-6.

    Article  Google Scholar 

  167. Tayebi T, Chamkha AJ. Buoyancy-driven heat transfer enhancement in a sinusoidally-heated enclosure utilizing hybrid nanofluid. Comput Therm Sci. 2017;9:405–21. https://doi.org/10.1615/ComputThermalScien.2017019908.

    Article  Google Scholar 

  168. Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37:1421–5. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.

    Article  CAS  Google Scholar 

  169. Sheremet MA, Pop I. Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media. 2014;103:191–205. https://doi.org/10.1007/s11242-014-0297-4.

    Article  CAS  Google Scholar 

  170. Nguyen-Quang T. Onset of gravitactic bioconvection in a square anisotropic porous medium with arbitrary orientation of the principal axes. Int J Heat Mass Transf. 2008;51:1497–504. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.035.

    Article  Google Scholar 

  171. Sheikholeslami M, Chamkha AJ. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer Heat Transf Part A Appl. 2016;69:781–93. https://doi.org/10.1080/10407782.2015.1090819.

    Article  CAS  Google Scholar 

  172. Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf. 2017;109:115–22. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.115.

    Article  CAS  Google Scholar 

  173. Khan U, Ahmed N, Mohyud-Din ST, Bin-Mohsin B. A bioconvection model for MHD flow and heat transfer over a porous wedge containing both nanoparticles and gyrotatic microorganisms. J Biol Syst. 2016;24:409–29. https://doi.org/10.1142/S0218339016500212.

    Article  Google Scholar 

  174. Khan U, Ahmed N, Mohyud-Din ST. Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms. Springerplus. 2016;5:2043. https://doi.org/10.1186/s40064-016-3718-8.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56. https://doi.org/10.1016/j.ijthermalsci.2011.04.010.

    Article  CAS  Google Scholar 

  176. Nemati H, Farhadi M, Sedighi K, Ashorynejad HR, Fattahi E. Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. Sci Iran. 2012;19:303–10. https://doi.org/10.1016/j.scient.2012.02.016.

    Article  Google Scholar 

  177. Ben Hamida MB, Charrada K. Natural convection heat transfer in an enclosure filled with an ethylene glycol—copper nanofluid under magnetic fields. Numer Heat Transf Part A Appl. 2015;67:902–20. https://doi.org/10.1080/10407782.2014.949209.

    Article  CAS  Google Scholar 

  178. El-Maghlany WM, Abo Elazm MM, Elhelw M, Bayoumi S. Constraints on nanoparticle addition in natural-convection heat transfer at highly magnetic field. J Thermophys Heat Transf. 2018;32:141–54. https://doi.org/10.2514/1.T5183.

    Article  CAS  Google Scholar 

  179. Jelodari I, Nikseresht AH. Effects of Lorentz force and induced electrical field on the thermal performance of a magnetic nanofluid-filled cubic cavity. J Mol Liq. 2018;252:296–310. https://doi.org/10.1016/j.molliq.2017.12.143.

    Article  CAS  Google Scholar 

  180. Al-Rashed AAAA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, et al. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Phys E Low-Dimensional Syst Nanostructures. 2018;99:294–303. https://doi.org/10.1016/j.physe.2018.02.011.

    Article  CAS  Google Scholar 

  181. Benzema M, Benkahla YK, Ouyahia SE. Rayleigh-Bénard MHD convection of Al2O3-water nanofluid in a square enclosure: magnetic field orientation effect. Energy Procedia. 2017;139:198–203. https://doi.org/10.1016/j.egypro.2017.11.196.

    Article  CAS  Google Scholar 

  182. Mliki B, Abbassi MA, Omri A, Zeghmati B. Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption. Powder Technol. 2016;295:69–83. https://doi.org/10.1016/j.powtec.2016.03.038.

    Article  CAS  Google Scholar 

  183. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110.

    Article  CAS  Google Scholar 

  184. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059.

    Article  CAS  Google Scholar 

  185. Kefayati GR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.078.

    Article  Google Scholar 

  186. Mahmoudi AH, Abu-Nada E. Combined effect of magnetic field and nanofluid variable properties on heat transfer enhancement in natural convection. Numer Heat Transf Part A Appl. 2013;63:452–72. https://doi.org/10.1080/10407782.2013.733182.

    Article  CAS  Google Scholar 

  187. Sheikholeslami M, Ganji DD. Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method. Phys A Stat Mech Its Appl. 2014;417:273–86. https://doi.org/10.1016/j.physa.2014.09.053.

    Article  CAS  Google Scholar 

  188. Solghar A, Davoudian M. Buoyancy-driven heat transfer analysis in a square cavity with a mounted variable length partition in the presence of magnetic field. Eur J Comput Mech. 2014;23:61–77. https://doi.org/10.1080/17797179.2014.912072.

    Article  Google Scholar 

  189. Selimefendigil F, Öztop HF. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J Taiwan Inst Chem Eng. 2015;56:42–56. https://doi.org/10.1016/j.jtice.2015.04.018.

    Article  CAS  Google Scholar 

  190. Lam PAK, Prakash KA. Effect of magnetic field on natural convection and entropy generation in Al2O3/water nanofluid-filled enclosure with twin protruding heat sources. J Therm Sci Eng Appl. 2017;9:024502. https://doi.org/10.1115/1.4035810.

    Article  CAS  Google Scholar 

  191. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J Magn Magn Mater. 2018;452:193–204. https://doi.org/10.1016/j.jmmm.2017.12.075.

    Article  CAS  Google Scholar 

  192. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2018;0123456789:1–13. https://doi.org/10.1007/s10973-018-7339-z.

    Article  CAS  Google Scholar 

  193. Hussam WK, Khanafer K, Salem HJ, Sheard GJ. Natural convection heat transfer utilizing nanofluid in a cavity with a periodic side-wall temperature in the presence of a magnetic field. Int Commun Heat Mass Transf. 2019;104:127–35. https://doi.org/10.1016/j.icheatmasstransfer.2019.02.018.

    Article  CAS  Google Scholar 

  194. Kefayati GR. Simulation of ferrofluid heat dissipation effect on natural convection at an inclined cavity filled with kerosene/cobalt utilizing the lattice boltzmann method. Numer Heat Transf Part A Appl. 2014;65:509–30. https://doi.org/10.1080/10407782.2013.836022.

    Article  CAS  Google Scholar 

  195. Zhang T, Che D. Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources. Int J Heat Mass Transf. 2016;94:87–100. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.071.

    Article  CAS  Google Scholar 

  196. Mamourian M, Milani Shirvan K, Pop I. Sensitivity analysis for MHD effects and inclination angles on natural convection heat transfer and entropy generation of Al2O3-water nanofluid in square cavity by Response Surface Methodology. Int Commun Heat Mass Transf. 2016;79:46–57. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.001.

    Article  CAS  Google Scholar 

  197. Tezer-sezgin M, Bozkaya C, Türk Ö. Natural convection flow of a nanofluid in an enclosure under an inclined uniform magnetic field. Eur J Comput Mech. 2017;7179:1–22. https://doi.org/10.1080/17797179.2016.1181029.

    Article  Google Scholar 

  198. Zhou WN, Yan YY. Numerical investigation of the effects of a magnetic field on nanofluid flow and heat transfer by the Lattice Boltzmann Method. Numer Heat Transf Part A Appl. 2015;68:1–16. https://doi.org/10.1080/10407782.2014.965017.

    Article  CAS  Google Scholar 

  199. Al-Rashed AA, Kalidasan K, Kolsi L, Aydi A, Malekshah EH, Hussein AK, et al. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liq. 2018;252:454–68. https://doi.org/10.1016/j.molliq.2018.01.006.

    Article  CAS  Google Scholar 

  200. Sheremet MA, Pop I, Roşca NC. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: buongiorno’s mathematical model. J Taiwan Inst Chem Eng. 2016;61:211–22. https://doi.org/10.1016/j.jtice.2015.12.015.

    Article  CAS  Google Scholar 

  201. Mahmoudi A, Mejri I, Ammarabbassi M, Omri A. MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. J Comput Methods Sci Eng. 2014;14:291–313. https://doi.org/10.3233/JCM-140503.

    Article  CAS  Google Scholar 

  202. Astanina MS, Kamel Riahi M, Abu-Nada E, Sheremet MA. Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations. Int J Heat Mass Transf. 2018;116:532–48. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.050.

    Article  CAS  Google Scholar 

  203. Pordanjani AH, Jahanbakhshi A, Ahmadi Nadooshan A, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.019.

    Article  CAS  Google Scholar 

  204. Ahrar AJ, Djavareshkian MH, Ahrar AR. Numerical simulation of Al2O3-water nanofluid heat transfer and entropy generation in a cavity using a novel TVD hybrid LB method under the influence of an external magnetic field source. Therm Sci Eng Prog. 2019;14:100416. https://doi.org/10.1016/j.tsep.2019.100416.

    Article  Google Scholar 

  205. Vahedi SM, Pordanjani AH, Wongwises S, Afrand M. On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field: sensitivity analysis and optimization. J Therm Anal Calorim. 2019;138:679–96. https://doi.org/10.1007/s10973-019-08224-6.

    Article  CAS  Google Scholar 

  206. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47. https://doi.org/10.1016/j.jmmm.2016.04.061.

    Article  CAS  Google Scholar 

  207. Kalbani KS, Rahman MM, Alam S, Al-Salti N, Eltayeb IA. Buoyancy induced heat transfer flow inside a tilted square enclosure filled with nanofluids in the presence of oriented magnetic field. Heat Transf Eng. 2018;39:511–25. https://doi.org/10.1080/01457632.2017.1320164.

    Article  CAS  Google Scholar 

  208. Selimefendigil F, Öztop HF. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. Phys A Stat Mech Its Appl. 2019;540:123004. https://doi.org/10.1016/j.physa.2019.123004.

    Article  CAS  Google Scholar 

  209. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90. https://doi.org/10.1016/j.jmmm.2017.07.028.

    Article  CAS  Google Scholar 

  210. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.130.

    Article  CAS  Google Scholar 

  211. Malik S, Nayak AK. MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int J Heat Mass Transf. 2017;111:329–45. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.123.

    Article  CAS  Google Scholar 

  212. Javed T, Mehmood Z, Abbas Z. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Phys B Condens Matter. 2017;506:122–32. https://doi.org/10.1016/j.physb.2016.11.008.

    Article  CAS  Google Scholar 

  213. Sheikholeslami M, Zeeshan A. Mesoscopic simulation of CuO–H2O nanofluid in a porous enclosure with elliptic heat source. Int J Hydrogen Energy. 2017;42:15393–402. https://doi.org/10.1016/j.ijhydene.2017.04.276.

    Article  CAS  Google Scholar 

  214. Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.054.

    Article  CAS  Google Scholar 

  215. Zahmatkesh I, Shandiz MRH. Optimum constituents for MHD heat transfer of nanofluids within porous cavities: a Taguchi analysis in natural and mixed convection configurations. J Therm Anal Calorim. 2019;138:1669–81. https://doi.org/10.1007/s10973-019-08191-y.

    Article  CAS  Google Scholar 

  216. Chandra SB, Haritha C, Kishan N. Magnetohydrodynamic convection in a porous square cavity filled by a nanofluid with viscous dissipation effects. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233:474–88. https://doi.org/10.1177/0954408918765314.

    Article  Google Scholar 

  217. Rashad AM, Armaghani T, Chamkha AJ, Mansour MA. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese J Phys. 2018;56:193–211. https://doi.org/10.1016/j.cjph.2017.11.026.

    Article  CAS  Google Scholar 

  218. Ahmed SE, Rashed ZZ. MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Stud Therm Eng. 2019;14:100430. https://doi.org/10.1016/j.csite.2019.100430.

    Article  Google Scholar 

  219. Joubert JC, Sharifpur M, Solomon AB, Meyer JP. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets. J Magn Magn Mater. 2017;443:149–58. https://doi.org/10.1016/j.jmmm.2017.07.062.

    Article  CAS  Google Scholar 

  220. Roszko A, Fornalik-Wajs E. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid. Heat Mass Transf Und Stoffuebertragung. 2017. https://doi.org/10.1007/s00231-017-2172-7.

    Article  Google Scholar 

  221. Mansour MA, Siddiqa S, Gorla RSR, Rashad AM. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Therm Sci Eng Prog. 2018;6:57–71. https://doi.org/10.1016/j.tsep.2017.10.014.

    Article  Google Scholar 

  222. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69. https://doi.org/10.1016/j.ijmecsci.2018.11.019.

    Article  Google Scholar 

  223. Sajjadi H, Amiri Delouei A, Izadi M, Mohebbi R. Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int J Heat Mass Transf. 2019;132:1087–104. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.060.

    Article  CAS  Google Scholar 

  224. Bourantas GC, Loukopoulos VC. MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int J Heat Mass Transf. 2014;79:930–44. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.075.

    Article  CAS  Google Scholar 

  225. Türk O, Tezer-Sezgin M. FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field. Meccanica. 2016;52:889–901. https://doi.org/10.1007/s11012-016-0431-1.

    Article  Google Scholar 

  226. Periyadurai K, Muthtamilselvan M, Doh DH. Influence of inclined Lorentz force on micropolar fluids in a square cavity with uniform and nonuniform heated thin plate. J Magn Magn Mater. 2016;420:343–55. https://doi.org/10.1016/j.jmmm.2016.07.014.

    Article  CAS  Google Scholar 

  227. Hashemi H, Namazian Z, Zadeh SMH, Mehryan SAM. MHD natural convection of a micropolar nanofluid flowing inside a radiative porous medium under LTNE condition with an elliptical heat source. J Mol Liq. 2018;271:914–25. https://doi.org/10.1016/j.molliq.2018.09.010.

    Article  CAS  Google Scholar 

  228. Ghodsinezhad H, Sharifpur M, Meyer JP. Experimental investigation on cavity flow natural convection of Al2O3-water nanofluids. Int Commun Heat Mass Transf. 2016;76:316–24. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.005.

    Article  CAS  Google Scholar 

  229. Abdolbaqi MK, Azmi WH, Mamat R, Sharma KV, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of bioglycol - water mixture based Al2O3 nanofluid. Appl Therm Eng. 2016;102:932–41. https://doi.org/10.1016/j.applthermaleng.2016.03.074.

    Article  CAS  Google Scholar 

  230. Liu C, Fang H, Qiao Y, Zhao J, Rao Z. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids. Int J Heat Mass Transf. 2019;138:690–8. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.090.

    Article  CAS  Google Scholar 

  231. Sheremet MA, Grosan T, Pop I. MHD free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms. Int J Numer Methods Heat Fluid Flow. 2019;29:4642–59. https://doi.org/10.1108/HFF-03-2019-0264.

    Article  Google Scholar 

  232. Ghasemi K, Siavashi M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.2017.03.016.

    Article  Google Scholar 

  233. Sheremet MA, Astanina MS, Pop I. MHD natural convection in a square porous cavity filled with a water-based magnetic fluid in the presence of geothermal viscosity. Int J Numer Methods Heat Fluid Flow. 2018;28:2111–31. https://doi.org/10.1108/HFF-12-2017-0503.

    Article  Google Scholar 

  234. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid. Numer Heat Transf Part A Appl. 2017;72:479–94. https://doi.org/10.1080/10407782.2017.1386515.

    Article  CAS  Google Scholar 

  235. Sivaraj C, Sheremet MA. MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci. 2018;149:326–37. https://doi.org/10.1016/j.ijmecsci.2018.10.017.

    Article  Google Scholar 

  236. Sivaraj C, Sheremet MA. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60. https://doi.org/10.1016/j.jmmm.2016.11.112.

    Article  CAS  Google Scholar 

  237. Dogonchi A, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08408-0.

    Article  Google Scholar 

  238. Dogonchi A, Armaghani T, Chamkha AJ, Ganji DD. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab J Sci Eng. 2019. https://doi.org/10.1007/s13369-019-03956-x.

    Article  Google Scholar 

  239. Mehryan SAM, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube–Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J Therm Anal Calorim. 2019;138:1541–55. https://doi.org/10.1007/s10973-019-08164-1.

    Article  CAS  Google Scholar 

  240. Ghalambaz M, Mehryan SAM, Izadpanahi E, Chamkha AJ, Wen D. MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08258-w.

    Article  Google Scholar 

Download references

Acknowledgements

The funding received from the National Research Foundation of South Africa under the Renewable and Sustainable Energy Doctoral Scholarships is hereby acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sharifpur or M. H. Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, S.O., Sharifpur, M., Ahmadi, M.H. et al. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J Therm Anal Calorim 145, 2581–2623 (2021). https://doi.org/10.1007/s10973-020-09832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09832-3

Keywords

Navigation