Skip to main content
Log in

On the hydrothermal features of radiative Fe3O4–graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present investigation concentrates on the hydrothermal features of both hybrid nanofluid and usual nanofluid flow over a slippery permeable bent structure. The surface has also been considered to be coiled inside the circular section of radius R. Ferrous and graphene nanoparticles along with the host fluid water are taken to simulate the flow. The existence of heat sink/source and thermal radiation are incorporated within the system. Resulting equations are translated into its non-dimensional form using similarity renovation and solved by the RK-4 method. The consequence of pertinent factors on the flow profile is explored through graphs and tables. Streamlines and isotherms for both hybrid nanofluid and usual nanofluid are depicted to show the hydrothermal variations. The result communicates that temperature is reduced for curvature factor, whereas velocity is found to be accelerated. Heat transfer is intensified for thermal Biot number, and the rate of increment is higher for hybrid nanosuspension. Velocity and temperature are intensified for enhanced nanoparticle concentration. The heat transport process is decreased for the heat source parameter, but the reduction rate is comparatively slower for hybrid nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\left( {u,v} \right)\) :

Velocity components (m s−1)

\(r,s \,\) :

Spatial coordinates (m)

\(a\) :

Stretching constant (s−1)

\(U_{\text{w}}\) :

Stretching velocity (m s−1)

\(a\) :

Stretching rate (s−1)

\(R\) :

Radius of curvature (m)

\(T_{{\rm w}}\) :

Temperature of the surface (K)

\(T_{\infty }\) :

Temperature away from surface (K)

\(T\) :

Hybrid nanofluid temperature (K)

\(\rho\) :

Density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\kappa\) :

Thermal conductivity (W m−1 K−1)

\(\rho C_{{\rm p}}\) :

Heat capacitance (J m−3 K−1)

\(\sigma\) :

Electrical conductivity (Ω−1 m−1)

\(B_{0}\) :

Magnetic field (Ω1/2 m−1 s−1/2 kg1/2)

\(q_{{\rm r}}\) :

Radiative heat flux (kg s−3)

\(\sigma^{*}\) :

Stefan Boltzmann constant (W m−2 K−4)

\(k^{*}\) :

Mean absorption coefficient (m−1)

\(L\) :

Velocity slip factor (m)

\(v_{{\rm w}}\) :

Suction/injection velocity (m s−1)

\(h\) :

Convective heat transport coefficient (W m−2 K−1)

\(\phi\) :

Nanoparticle volume fraction

\(Q\) :

Heat source or sink

\(K = \sqrt {\frac{a}{{\nu_{{\rm f}} }}} R\) :

Curvature parameter

\(L_{{\rm slip}} = L\sqrt {\frac{a}{{\nu_{{\rm f}} }}}\) :

Velocity slip parameter

\(\Pr = \frac{{\mu_{{\rm f}} \left( {\rho C_{{\rm p}} } \right)_{{\rm f}} }}{{\rho_{{\rm f}} \kappa_{{\rm f}} }}\) :

Prandtl number

\(M = \frac{{\sigma_{{\rm f}} B_{0}^{2} }}{{a\rho_{{\rm f}} }}\) :

Magnetic parameter

\(S = - \frac{{v_{{\rm w}} }}{{\sqrt {a\nu_{{\rm f}} } }}\) :

Suction/injection parameter

\({\text{Bi}} = \frac{{h_{{\rm f}} }}{{\kappa_{{\rm f}} }}\sqrt {\frac{{\nu_{{\rm f}} }}{a}}\) :

Biot number

\(N = \frac{{4\sigma^{*} T^{3}_{\infty } }}{{3k^{*} \kappa_{{\rm f}} }}\) :

Radiation parameter

\(\theta_{{\rm w}} = \frac{{T_{{\rm w}} }}{{T_{\infty } }}\) :

Temperature ratio parameter

\(\lambda = \frac{Q}{{a\left( {\rho c_{{\rm p}} } \right)_{{\rm f}} }}\) :

Heat source/sink parameter

Nu:

Nusselt number

\(C_{{\rm f}}\) :

Skin friction

\({\text{Nu}}_{{\rm r}}\) :

Reduced Nusselt number

\(C_{{\rm fr}}\) :

Reduced skin friction

\(\text{Re}_{{\rm s}} = \frac{{as^{2} }}{{\nu_{{\rm f}} }}\) :

Local Reynold’s number

\({\text{f}}\) :

Base fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

\(1, \, 2\) :

First and second nanoparticle, respectively

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows, vol. 66. New York: ASME; 1995.

    Google Scholar 

  2. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    CAS  Google Scholar 

  3. Khan MS, Abid M, Ali HM, Amber KP, Bashir MA, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng. 2019;148:295–306.

    CAS  Google Scholar 

  4. Esfe MH, Afrand M. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2020;140:1633–54.

    Google Scholar 

  5. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. J Clean Prod. 2019;344:319–33.

    Google Scholar 

  6. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  7. Sadeghi A, Amini Y, Saidi MH, Chakraborty S. Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. Anal Chim Acta. 2014;838:64–75.

    CAS  PubMed  Google Scholar 

  8. Sadeghi A, Amini Y, Saidi MH, Yavari H. Shear-rate-dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices. AIChE J. 2015;61:1912–24.

    CAS  Google Scholar 

  9. Abdollahi P, Sabet JK, Moosavian MA, Amini Y. Microfluidic solvent extraction of calcium: modeling and optimization of the process variables. Sep Purif Technol. 2020;231:115875.

    CAS  Google Scholar 

  10. Marsousi S, Sabet JK, Moosavian MA, Amini Y. Liquid–liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J. 2019;356:492–505.

    CAS  Google Scholar 

  11. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    CAS  Google Scholar 

  12. Jahromi PF, Sabet JK, Amini Y. Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: an optimized separation approach. Chem Eng J. 2018;334:2603–15.

    Google Scholar 

  13. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  14. Mabood F, Khan WA, Makinde OD. Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with Hall effects. J Eng Thermophys. 2017;26:553–66.

    CAS  Google Scholar 

  15. Mabood F, Nayak MK, Chamkha AJ. Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. Eur Phys J. 2019;134(9):427.

    CAS  Google Scholar 

  16. Khan NS, Zuhra S, Shah Z, Bonyah E, Khan W, Islam S. Slip flow of Eyring–Powell nanoliquid film containing graphene nanoparticles. AIP Adv. 2018;8:115302.

    Google Scholar 

  17. Aly EH. Dual exact solutions of graphene–water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: critical values and regions with stability. Powder Technol. 2019;342:528–44.

    CAS  Google Scholar 

  18. Ullah I, Waqas M, Hayat T, Alsaedi A, Khan MI. Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J Therm Anal Calorim. 2019;135:1021–30.

    CAS  Google Scholar 

  19. Acharya N, Das K, Kundu PK. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel: a thermal framework. J Therm Anal Calorim. 2019;138(1):461–77.

    CAS  Google Scholar 

  20. Animasaun IL, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135(2):873–86.

    CAS  Google Scholar 

  21. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  22. Kaska SA, Khalefa RA, Hussein AM. Hybrid nanofluid to enhance heat transfer under turbulent flow in a flat tube. Case Stud Therm Eng. 2019;13:100398.

    Google Scholar 

  23. Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol Energy. 2019;183:173–203.

    CAS  Google Scholar 

  24. Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int J Heat Mass Transf. 2018;125:82–103.

    CAS  Google Scholar 

  25. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications: an experimental based study. J Therm Anal Calorim. 2018;131:1437–47.

    Google Scholar 

  26. Derakhshan R, Shojaei A, Hosseinzadeh Kh, Nimafar M, Ganji DD. Hydrothermal analysis of magneto hydrodynamic nanofluid flow between two parallel by AGM. Case Stud Therm Eng. 2019;14:100439.

    Google Scholar 

  27. Pandey AK, Kumar MM. Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip. Alex Eng J. 2016;55:3115–23.

    Google Scholar 

  28. Zeeshan A, Ellahi R, Mabood F, Hussain F. Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int J Numer Methods Heat Fluid Flow. 2019;29:2854–69.

    Google Scholar 

  29. Acharya N, Das K, Kundu PK. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Appl Nanosci. 2018;8(3):369–78.

    CAS  Google Scholar 

  30. Ahmad R, Mustafa M, Hayat T, Alsaedi A. A numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet. J Magn Magn Mater. 2016;407:69–74.

    CAS  Google Scholar 

  31. Manjunatha S, Kuttan BA, Jayanthi S, Chamkha AJ, Gireesha BJ. Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon. 2019;5(4):e01469.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017;7:2317–24.

    Google Scholar 

  33. Yousefi M, Dinarvand S, Yazdi ME, Pop I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. Int J Numer Methods Heat Fluid Flow. 2018;28(7):1716–35.

    Google Scholar 

  34. Afridi MI, Tlili I, Goodarzi M, Osman M, Khan NA. Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry. 2019;11(5):663.

    CAS  Google Scholar 

  35. Nadeem S, Hayat T, Khan AU. Numerical study on 3D rotating hybrid SWCNT/MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr. 2019;94:075202.

    CAS  Google Scholar 

  36. Dinarvand S, Rostami MN, Pop I. A novel hybridity model for TiO2–CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Sci Rep. 2019;9:16290.

    PubMed  PubMed Central  Google Scholar 

  37. Acharya N, Bag R, Kundu PK. Influence of Hall current on radiative nanofluid flow over a spinning disk: a hybrid approach. Phys E Low Dimens Syst Nanostruct. 2019;111:103–12.

    CAS  Google Scholar 

  38. Devi SSU, Devi SPA. Numerical investigation of three-dimensional hybrid Cu Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys. 2016;94(5):490–6.

    CAS  Google Scholar 

  39. Acharya N, Bag R, Kundu PK. On the impact of nonlinear thermal radiation on magnetized hybrid condensed nanofluid flow over a permeable texture. Appl Nanosci. 2019. https://doi.org/10.1007/s13204-019-01224-w.

    Article  Google Scholar 

  40. Acharya N, Maity S, Kundu PK. Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization. Appl Nanosci. 2020;10:633–47.

    CAS  Google Scholar 

  41. Ali A, Saleem S, Mumraiz S, Saleem A, Awais M, Marwat DNK. Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09648-1.

    Article  Google Scholar 

  42. Hassan M, Marin M, Ellahi R, Alamri SZ. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid nanofluids. Heat Transf Res. 2018;49(18):1837–48.

    Google Scholar 

  43. Sajid M, Ali N, Javed T, Abbas Z. Stretching a curved surface in a viscous fluid. Chin Phys Lett. 2010;27:024703.

    Google Scholar 

  44. Sanni KM, Asghar S, Jalil M, Okechi NF. Flow of viscous fluid along a nonlinearly stretching curved surface. Results Phys. 2017;7:1–4.

    Google Scholar 

  45. Shaiq S, Maraj EN. Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface. Arab J Sci Eng. 2019;44:7515–28.

    CAS  Google Scholar 

  46. Imtiaz M, Hayat T, Alsaedi A. Convective flow of ferrofluid due to a curved stretching surface with homogeneous heterogeneous reactions. Powder Technol. 2017;310:154–62.

    CAS  Google Scholar 

  47. Afridi MI, Alkanhal TA, Qasim M, Tlili I. Entropy generation in Cu–Al2O3–H2O hybrid nanofluid flow over a curved surface with thermal dissipation. Entropy. 2019;21:941.

    CAS  PubMed Central  Google Scholar 

  48. Saba F, Ahmed N, Hussain S, Khan U, Mohyud-Din ST, Darus M. Thermal analysis of nanofluid flow over a curved stretching surface suspended by carbon nanotubes with internal heat generation. Appl Sci. 2018;8:395.

    Google Scholar 

  49. Acharya N. Active–passive controls of liquid di-hydrogen mono-oxide based nanofluidic transport over a bended surface. Int J Hydrogen Energy. 2019;44(50):27600–14.

    CAS  Google Scholar 

  50. Acharya N, Bag R, Kundu PK. On the mixed convective carbon nanotube flow over a convectively heated curved surface. Heat Transf. 2020. https://doi.org/10.1002/htj.21687.

    Article  Google Scholar 

  51. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 2019;9:025103.

    Google Scholar 

  52. Mehmood Z, Iqbal Z, Azhar E, Maraj EN. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux. Z Naturforsch. 2016;72(3):223–9.

    Google Scholar 

  53. Abbas Z, Naveed M, Sajid M. Heat transfer analysis for stretching flow over a curved surface with magnetic field. J Eng Thermophys. 2013;22(4):337–45.

    CAS  Google Scholar 

  54. Imtiaz M, Mabood F, Hayat T, Alsaedi A. Homogeneous–heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int J Heat Mass Transf. 2019;145:118781.

    CAS  Google Scholar 

  55. Ullah I, Hayat T, Alsaedi A, Asghar S. Dissipative flow of hybrid nanoliquid (H2O–aluminum alloy nanoparticles) with thermal radiation. Phys Scr. 2019;94(12):125708.

    CAS  Google Scholar 

  56. Makinde OD, Mabood F, Ibrahim SM. Chemically reacting on MHD boundary layer flow of nanofluids over a nonlinear stretching sheet with heat source/sink and thermal radiation. Therm Sci. 2018;22:495–506.

    Google Scholar 

  57. AnanthaKumar K, Sandeep N, Sugunamma V, et al. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 2020;139:2145–53.

    CAS  Google Scholar 

  58. Acharya N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09111-w.

    Article  Google Scholar 

  59. Takabi B, Gheitaghy AM, Tazraei P. Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness. J Thermophys Heat Transf. 2016;30(3):523–32.

    CAS  Google Scholar 

  60. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

  61. Maxwell J. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904.

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their cordial thanks to the respected Editor in chief and honourable reviewers for their valuable suggestions and comments to improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilankush Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N., Mabood, F. On the hydrothermal features of radiative Fe3O4–graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J Therm Anal Calorim 143, 1273–1289 (2021). https://doi.org/10.1007/s10973-020-09850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09850-1

Keywords

Mathematics Subject Classification

Navigation