Skip to main content
Log in

Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present communication aims to determine the impact of Cattaneo–Christov model and convective boundary on second-grade nanofluid flow alongside a Riga pattern. Zero mass flux is accounted at the solid surface of Riga pattern such that the fraction of nanoparticles maintains itself on strong retardation. The impact of Lorentz forces generated by Riga pate is also an important aspect of the study. The governing nonlinear problem is converted into ordinary problems via suitably adjusted transformations. Spectral local linearization method has been incorporated to find the solutions of the nonlinear problems. Variation in horizontal movement of the nanofluid, thermal distribution and concentration distribution of the nanoparticles has been noted for various fluid parameters. The results are plotted graphically. Outcomes indicate that the horizontal movement gains enhancement for elevated values of modified Hartman factor. Thermal state of the nanofluid and concentration of nanoparticles receive reduction for incremental values of relaxation time parameters. Numerical results for skin friction and heat flux have been reported in tabular form. The CPU run time and residual error are obtained to check the efficiency of the method used for finding the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(\text {SLLM}\) :

Spectral local linearization method

\(\text {EMHD}\) :

Electro-magnetohydrodynamics

\(\text {ODE}\) :

Ordinary differential equation

\(\text {PDE}\) :

Partial differential equation

xy :

Cartesian coordinates/m

uv :

Velocity components/m s\(^{-1}\)

\(u=ax\) :

Velocity /m s\(^{-1}\)

a :

Positive constant/s\(^{-1}\)

T :

Local temperature/K

\(T_\infty\) :

Ambient temperature/K

g :

Gravitational acceleration/m s\(^{-2}\)

\(j_0\) :

Current density/A m\(^{-2}\)

\(\nu\) :

Kinematic viscosity/m\(^{2}\)  s\(^{-1}\)

\(\rho\) :

Density/kg m\(^{-3}\)

\(\beta _\mathrm{{T}}\) :

Thermal coefficient/K\(^{-1}\)

\(\alpha\) :

Thermal diffusivisity/m\(^{2}\) s\({-1}\)

b :

Width of magnets/m

\(C_{{\mathrm{{f}}}}\) :

Skin friction (wall drag force)

\(\mathrm{{Nu}}_\mathrm{{x}}\) :

Local Nusselt number

\(B_{\mathrm{{it}}}\) :

Biot number

\(D_\mathrm{{B}}\) :

Brownian diffusion/\(\mathrm{{m}}^2\,\mathrm{{s}}^{-1}\)

\(\mathrm{{Re}}_\mathrm{{x}}\) :

Local Reynolds number

\(\mathrm{{Gr}}_\mathrm{{x}}\) :

Local Grashof number

\(D_\mathrm{{T}}\) :

Thermophoretic diffusion/\(\mathrm{{m}}^2\,\mathrm{{s}}^{-1}\)

\(\delta\) :

Second-grade nanofluid parameter

\(h_{{\mathrm{{f}}}}\) :

Heat transfer coefficient

H :

Modified Hartman number

\(\beta _1\) :

Dimensionless parameter

Pr:

Prandtl number

Nb:

Brownian diffusion parameter

Nt:

Thermophoresis parameter

\(\lambda _1, \lambda _2\) :

Fluid parameters

\(\kappa\) :

Richardson number

Le:

Lewis number

C :

Concentration distributions

\(\sigma\) :

Electric conductivity of the base fluid/(\(\Omega\) m)\(^{-1}\)

\(\tau\) :

Ratio of heat capacity of fluid and nanoparticles

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non-Newt Flows. 1995;2:99–105.

    Google Scholar 

  2. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7:227–33.

    Article  CAS  Google Scholar 

  3. Buongiorno J, Hu W. Nanofluid coolants for advanced nuclear power plants. In :Proceedings of ICAPP-05 Seoul. 2005; 5705.

  4. Aziz A, Khan WA. Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Int J Therm Sci. 2012;52:83–90.

    Article  CAS  Google Scholar 

  5. Khan WA, Aziz A, Uddin N. Buongiorno model for nanofluid Blasius flow with surface heat and mass fluxes. J Therm Heat Trans. 2013;27:134–41.

    Article  CAS  Google Scholar 

  6. Rasool G, Shafiq A, Khalique CM, Zhang T. Magnetohydrodynamic Darcy Forchheimer nanofluid flow over nonlinear stretching sheet. Phys Scr. 2019;94(10):105221.

    Article  CAS  Google Scholar 

  7. Rasool G, Zhang T. Characteristics of chemical reaction and convective boundary conditions in Powell–Eyring nanofluid flow along a radiative Riga plate. Heliyon. 2019;5:e01479.

    Article  Google Scholar 

  8. Bhatti MM, Elelamy AF, Sait SM, Ellahi R. Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy. Symmetry. 2020;12:532. https://doi.org/10.3390/sym12040532.

    Article  Google Scholar 

  9. Bhatti MM, Shahid A, Abbas T, Alamri SZ, Ellahi R. Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes. 2020;8:328. https://doi.org/10.3390/pr8030328.

    Article  Google Scholar 

  10. Zhang L, Arain MB, Bhatti MM, Zeeshan A, Hal-Sulami H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl Math Mech Engl Ed. 2020;41(4):637–54.

    Article  CAS  Google Scholar 

  11. Bhatti MM, Ellahi R, Zeeshan A, Marin M, Ijaz N. Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod Phy Lett. 2019;33(35):1950439.

    Article  CAS  Google Scholar 

  12. Wakif A, Chamkha A, Thumma T, et al. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of aluminacopper oxide hybrid nanofluids utilizing the generalized Buongiornos nanofluid model. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09488-z.

    Article  Google Scholar 

  13. Khan MR, Pan K, Khan AU, Nadeem S. Dual solutions for mixed convection flow of \(SiO-AlO\)/water hybrid nanofluid near the stagnation point over a curved surface. Phys A: Stat Mech Appl. 2020;547(1):123959. https://doi.org/10.1016/j.physa.2019.123959.

    Article  CAS  Google Scholar 

  14. Mebarek-Oudina F, Bessah R. Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources. Phermo-Phys Aeromech. 2019;26:325–34.

    Article  Google Scholar 

  15. Wakif A. A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Math Prob Eng. 2020;2020:1675350. https://doi.org/10.1155/2020/1675350.

    Article  CAS  Google Scholar 

  16. Rashid M, Shahzadi I, Nadeem S. Significance of Knudsen number and corrugation on EMHD flow under metallic nanoparticles impact. Phys A: Stat Mech Appl. 2020;. https://doi.org/10.1016/j.physa.2019.124089.

    Article  Google Scholar 

  17. Alkasassbeh M, Omar Z, MebarekOudina F, Raza J, Chamkha A. Heat transfer study of convective fin with temperaturedependent internal heat generation by hybrid block method. Heat Trans Asian Res. 2019;48(4):1225–44.

    Article  Google Scholar 

  18. Nadeem S, Ahmad S, Muhammad N. Analysis of ferrite nanoparticles in liquid. Pramana J Phys. 2020;94:54. https://doi.org/10.1007/s12043-019-1913-1.

    Article  Google Scholar 

  19. Wakif A, Animasaun IL, Satya Narayana PV, Sarojamma G. Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin J Phys. 2019. https://doi.org/10.1016/j.cjph.2019.12.002.

    Article  Google Scholar 

  20. Gourari S, Mebarek-Oudina F, Hussein AK, Kolsi L, Hassen W, Younis O. Numerical study of natural convection between two coaxial inclined cylinders. Int J Heat Technol. 2019;37(3):779–86.

    Article  Google Scholar 

  21. Abbas N, Malik MY, Nadeem S, et al. On extended version of YamadaOta and Xue models of hybrid nanofluid on moving needle. Eur Phys J Plus. 2020;135:145. https://doi.org/10.1140/epjp/s13360-020-00185-2.

    Article  Google Scholar 

  22. Rashid M, Ansar K, Nadeem S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys A: Stat Mech Appl. 2020;. https://doi.org/10.1016/j.physa.2019.123979.

    Article  Google Scholar 

  23. Abbas N, Nadeem S, Malik MY. Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions. Phys A: Stat Mech Appl. 2020;. https://doi.org/10.1016/j.physa.2019.124083.

    Article  Google Scholar 

  24. Zaib A, Khan U, Wakif A, et al. Numerical entropic analysis of mixed MHD convective flows from a non-isothermal vertical flat plate for radiative tangent hyperbolic blood biofluids conveying magnetite ferroparticles: dual similarity solutions. Arab J Sci Eng. 2020;. https://doi.org/10.1007/s13369-020-04393-x.

    Article  Google Scholar 

  25. Makinde OD, Omojola MT, Mahanthesh B, Alao FI, Adegbie KS, Animasaun IL, et al. Significance of buoyancy, velocity index and thickness of an upper horizontal surface of a paraboloid of revolution: the case of non-Newtonian Carreau fluid. Def Diffus Forum. 2018;387:55061. https://doi.org/10.4028/www.scientific.net/ddf.387.550.

    Article  Google Scholar 

  26. Prasad KV, Vaidya H, Makinde OD, Vajravelu K, Wakif A, Basha H. Comprehensive examination of the three-dimensional rotating flow of a UCM nanoliquid over an exponentially stretchable convective surface utilizing the optimal homotopy analysis method. Front Heat Mass Transf. 2020. https://doi.org/10.5098/hmt.14.11.

    Article  Google Scholar 

  27. Marzougui S, Mebarek-Oudina F, Aissa A, Magherbi M, Shah Z, Ramesh K. Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09662-3.

    Article  Google Scholar 

  28. Mahanthesh B, Lorenzini G, Mebarek-Oudina F, Animasaun IL. Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08985-0.

    Article  Google Scholar 

  29. Raza J, Mebarek-Oudina F, Ram P, Sharma S. MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with rossel and radiation. Def Diffus Forum. 2020;401:92–106.

    Article  Google Scholar 

  30. Mebarek-Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Trans Asian Res. 2019;48(1):135–47. https://doi.org/10.1002/htj.21375.

    Article  Google Scholar 

  31. Gailitis A, Lielausis O. On possibility to reduce the hydrodynamics resistance of a plate in an electrolyte. Appl Magn Rep Phys Inst Riga. 1961;12:143–6.

    Google Scholar 

  32. Tsinober AB, Shtern AG. Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics. 1967;3:103–5.

    Google Scholar 

  33. Grinberg E. On determination of properties of some potential fields. Appl Magnetohydrodyn Rep Phys Inst Riga. 1961;12:147–54.

    Google Scholar 

  34. Ahmad A, Asghar S, Afzal S. Flow of nanofluid past a Riga-plate. J Magn Magn Mater. 2016;402:44–8.

    Article  CAS  Google Scholar 

  35. Abbas T, Ayub M, Bhatti MM, Rashidi MM, Ali ME. Entropy generation on nanofluid flow through a horizontal Riga-plate. Entropy. 2016;18:223.

    Article  Google Scholar 

  36. Rasool G, Zhang T, Shafiq A. Second grade nanofluidic flow past a convectively heated vertical Riga plate. Phys Scr. 2019;94(12):125212.

    Article  CAS  Google Scholar 

  37. Fourier J-B-J. Théorie Analytique de la Chaleur. Paris: Firmin Didot, 1822.

  38. Fick R. Medizinische physik. Hirzel: Braunschweig Vieweg; 1856.

    Google Scholar 

  39. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  40. Straughan B. Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Trans. 2010;53:95–8.

    Article  Google Scholar 

  41. Tibullo V, Zampoli V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun. 2011;38:77–99.

    Article  Google Scholar 

  42. Khan JA, Mustafa M, Hayat T, Alsaedi A. Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS ONE. 2015;10:e0137363.

    Article  Google Scholar 

  43. Li J, Zheng L, Liu L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo–Christov heat flux effects. J Mol Liq. 2016;221:19–25.

    Article  Google Scholar 

  44. Hayat T, Qayyum S, Shehzad SA, et al. Cattaneo–Christov double-diffusion model for flow of Jeffrey fluid. J Braz Soc Mech Sci Eng. 2017;39:49654971.

    Google Scholar 

  45. Shehzad SA, Abbasi FM, Hayat T, Ahmad B. Cattaneo–Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Appl Math Mech. 2016;37:761–8.

    Article  Google Scholar 

  46. Sui J, Zheng L, Zhang X. Boundary layer heat and mass transfer with Cattaneo Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Therm Sci. 2016;104:461–8.

    Article  Google Scholar 

  47. Rasool G, Zhang T. Darcy–Forchheimer nanofluidic flow manifested with Cattaneo–Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE. 2019;14(8):e0221302.

    Article  CAS  Google Scholar 

  48. Ahmad S, Nadeem S, Muhammad N, et al. Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09504-2.

    Article  Google Scholar 

  49. Raju CSK, Sanddep N, Malvandi A. Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J Mol Liq. 2016;221:108–15.

    Article  CAS  Google Scholar 

  50. Irfan M, Khan M, Khan WA. Impact of non-uniform heat sink/source and convective condition in radiative heat transfer to Oldroyd-B nanofluid: a revised proposed relation. Phy Lett A. 2019;383:376–82.

    Article  CAS  Google Scholar 

  51. Pal D, Mandal G. Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci. 2016;126:308–18.

    Article  Google Scholar 

  52. Motsa SS. A new spectral local linearization method for nonlinear boundary layer flow problems. J Appl Math. 2013;2013:1–15.

    Google Scholar 

  53. Ahmad R, Mustafa M, Turkyilmazoglu M. Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study. Int J Heat Mass Trans. 2017;111:827–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged and thankful to unanimous reviewers for their valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Rasool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, G., Wakif, A. Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J Therm Anal Calorim 143, 2379–2393 (2021). https://doi.org/10.1007/s10973-020-09865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09865-8

Keywords

Navigation