Skip to main content
Log in

Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main aim of the present research is to measure the nucleate boiling heat transfer coefficient (BHTC) of aqueous glycol nano-suspension as a coolant around a horizontal heater. Alumina nanoparticles were added to the base fluid at a volumetric concentration of 1% to improve the thermal conductivity of the nano-suspension. The pressure of the system was set to the atmospheric pressure, and the coolant was tested at different applied heat fluxes (HF) ranged from 0 to 90 kW m−2 and volumetric concentration of 0–40% of the heavier component. Two zones of heat transfer were identified, including a natural convection zone and nucleate boiling one mixed with bubble formation and bubble interactions. Results also showed that the HTC of the nano-suspension is smaller than those recorded for the pure water. A rough comparison was made to examine the accuracy of the developed equations for estimating the BHTC value against the experimental data. It was found that the developed equations are not accurate for the data measured in the free convection region. Thus, the Churchill-Chu correlation was recommended for estimating the BHTC in the free convection area of heat transfer. Also, the effect of operating parameters such as HF and volumetric concentration on the pool boiling HTC of the solution was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Available boiling surface, m2

B0 :

Available area for heat transfer/available area for mass transfer (ratio)

C:

Heat capacity, J kg−1 K−1

DAB :

Coefficient of diffusion, m2 s−1

db :

Bubble departing diameter, m

g:

Gravitational acceleration, m2 s−1

Hfg :

Heat of vaporization, J kg−1

k:

Coefficient of thermal conductivity, W/mK

P:

Pressure, Pa

Pr:

Prandtl number

q:

Heat, W

Ra:

Rayleigh number

s:

Distance, m

T:

Temperature, k

b:

Bulk

c:

Critical

i :

Component

id :

Ideal

l:

Liquid

o:

Reference

r:

Reduced

s:

Saturated or surface

th :

Thermocouples

v :

Vapour

\( \alpha \) :

BHTC, boiling heat transfer coefficient, W m−2 K−1

\( \Delta \) :

Difference

\( \rho \) :

Density, kg m−3

References

  1. Kim J. Review of nucleate pool boiling bubble heat transfer mechanisms. Int J Multiph Flow. 2009;35(12):1067–76.

    CAS  Google Scholar 

  2. Gorenflo D, Danger E, Luke A, Kotthoff S, Chandra U, Ranganayakulu C. Bubble formation with pool boiling on tubes with or without basic surface modifications for enhancement. Int J Heat Fluid Flow. 2004;25(2):288–97.

    CAS  Google Scholar 

  3. Calka A, Judd RL. Some aspects of the interaction among nucleation sites during saturated nucleate boiling. Int J Heat Mass Trans. 1985;28(12):2331–42.

    CAS  Google Scholar 

  4. Zonouzi SA, Khodabandeh R, Safarzadeh H, Aminfar H, Mohammadpourfard M, Ghanbarpour M. Experimental study of the subcooled flow boiling heat transfer of magnetic nanofluid in a vertical tube under magnetic field. J Therm Anal Calorim. 2019;140:2805–16.

    Google Scholar 

  5. Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim. 2019;136(4):1781–93.

    CAS  Google Scholar 

  6. Wang W, Wu F, Yu Q, Jin H. Interfacial liquid–vapor phase change and entropy generation in pool boiling experiment for titanium tetrachloride. J Therm Anal Calorim. 2018;133(3):1571–8.

    CAS  Google Scholar 

  7. Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface. J Therm Anal Calorim. 2019;135(3):1753–62.

    CAS  Google Scholar 

  8. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Trans Eng. 2008;29(5):432–60.

    CAS  Google Scholar 

  9. Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130(3):2199–209.

    CAS  Google Scholar 

  10. Sulaiman MW, Daraghmeh HM, Wang C-C. Energy-saving potential of separated two-phase thermosiphon loops for data center cooling. J Therm Anal Calorim. 2020:1–21.

  11. Senthilkumar C, Krishnan AS, Solomon AB. Effect of thin porous copper coating on the performance of wickless heat pipe with R134a as working fluid. J Therm Anal Calorim. 2020;139(2):963–73.

    CAS  Google Scholar 

  12. Cacua K, Buitrago-Sierra R, Herrera B, Pabón E, Murshed SMS. Nanofluids’ stability effects on the thermal performance of heat pipes. J Therm Anal Calorim. 2019;136(4):1597–614.

    CAS  Google Scholar 

  13. Sarafraz MM, Tian Z, Tlili I, Kazi S, Goodarzi M. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J Therm Anal Calorim. 2020;139(4):2435–45.

    CAS  Google Scholar 

  14. Sarafraz MM, Tlili I, Tian Z, Khan AR, Safaei MR. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim. 2020;139(4):2413–22.

    CAS  Google Scholar 

  15. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    CAS  Google Scholar 

  16. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transfer. 2011;54(17–18):4051–68.

    CAS  Google Scholar 

  17. Wu JM, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy. 2013;66:13–24.

    CAS  Google Scholar 

  18. Rao GV, Balakrishnan AR. Heat transfer in nucleate pool boiling of multicomponent mixtures. Exp Therm Fluid Sci. 2004;29(1):87–103.

    Google Scholar 

  19. Gorenflo D. Pool Boiling. VDI Heat Atlas: VDI-Verlag, Dusseldorf, Germany; 1993.

    Google Scholar 

  20. Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transfer. 1980;23(1):73–87.

    CAS  Google Scholar 

  21. McNelly MJ. A correlation of rates of heat transfer to nucleate boiling of liquids. J Imperial College Chem Eng Soc. 1953;7:18–34.

    CAS  Google Scholar 

  22. Boyko LD, Kruzhilin GN. Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes. Int J Heat Mass Transf. 1967;10(3):361–73.

    CAS  Google Scholar 

  23. Mostinski IL. Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika. 1963;4(4):66–71.

    Google Scholar 

  24. Sarafraz MM. Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf. 2012;48(4):611–9.

    CAS  Google Scholar 

  25. Sarafraz MM, Peyghambarzadeh MS, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q/CICEQ. 2012;18(2):315–27.

    CAS  Google Scholar 

  26. Sarafraz MM, Peyghambarzadeh SM. Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. Int Commun Heat Mass Transf. 2012;39(8):1303–10. https://doi.org/10.1016/j.icheatmasstransfer.2012.06.020.

    Article  CAS  Google Scholar 

  27. Sarafraz MM, Hormozi F. Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp Therm Fluid Sci. 2014;53:70–85. https://doi.org/10.1016/j.expthermflusci.2013.11.004.

    Article  CAS  Google Scholar 

  28. Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf. 2009;131:033106.

    Google Scholar 

  29. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J Nanopart Res. 2004;6(4):355–61.

    Google Scholar 

  30. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    CAS  Google Scholar 

  31. Sarafraz MM, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Q. 2016;30(4):489–500.

    CAS  Google Scholar 

  32. Pourmehran O, Sarafraz MM, Rahimi-Gorji M, Ganji DD. Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J Taiwan Instit Chem Eng. 2018;88:37–48.

    CAS  Google Scholar 

  33. Sarafraz MM, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Transf. 2018;94:39–46.

    CAS  Google Scholar 

  34. Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9.

    CAS  Google Scholar 

  35. Sarafraz MM, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;263:382–9. https://doi.org/10.1016/j.molliq.2018.05.026.

    Article  CAS  Google Scholar 

  36. Sarafraz MM, Arya H, Saeedi M, Ahmadi D. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development. Appl Therm Eng. 2018;138:552–62. https://doi.org/10.1016/j.applthermaleng.2018.04.075.

    Article  CAS  Google Scholar 

  37. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22.

    CAS  Google Scholar 

  38. Goodarzi H, Akbari OA, Sarafraz MM, Karchegani MM, Safaei MR, Shabani S, et al. Numerical simulation of natural convection heat transfer of nanofluid with Cu, MWCNT, and Al2O3 nanoparticles in a cavity with different aspect ratios. J Thermal Sci Eng Appl. 2019;11:061020.

    CAS  Google Scholar 

  39. Sarafraz MM, Hart J, Shrestha E, Arya H, Arjomandi M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl Therm Eng. 2019;148:578–90.

    CAS  Google Scholar 

  40. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;136:884–95. https://doi.org/10.1016/j.renene.2019.01.035.

    Article  CAS  Google Scholar 

  41. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019;142:364–72.

    CAS  Google Scholar 

  42. Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transf. 2019;107:24–33. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.004.

    Article  CAS  Google Scholar 

  43. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Thermal Sci. 2020;147:106131.

    CAS  Google Scholar 

  44. Sarafraz MM. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J Appl Fluid Mech. 2013;6(1):73–9.

    CAS  Google Scholar 

  45. Sarafraz MM, Peyghambarzadeh SM. Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp Therm Fluid Sci. 2013;50:154–62.

    CAS  Google Scholar 

  46. Peyghambarzadeh SM, Vatani A, Jamialahmadi M. Application of asymptotic model for the prediction of fouling rate of calcium sulfate under subcooled flow boiling. Appl Therm Eng. 2012;39:105–13.

    CAS  Google Scholar 

  47. Watkinson AP. Particulate fouling of sensible heat exchangers. Int Heat Trans Conf. 1970. https://doi.org/10.1615/IHTC4.2780.

    Article  Google Scholar 

  48. Fazel SAA, Sarafraz M, Shamsabadi AA, Peyghambarzadeh SM. Pool boiling heat transfer in diluted water/glycerol binary solutions. Heat Transf Eng. 2013;34(10):828–37.

    CAS  Google Scholar 

  49. Farhana K, Kadirgama K, Rahman MM, Noor MM, Ramasamy D, Samykano M, et al. Significance of alumina in nanofluid technology. J Therm Anal Calorim. 2019;138(2):1107–26.

    CAS  Google Scholar 

  50. Sarafraz MM, Hormozi F. Pool boiling heat transfer to dilute copperoxide aqueous nanofluids. Int J Therm Sci. 2015;90:224–37.

    CAS  Google Scholar 

  51. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17.

    Google Scholar 

  52. Kline SJ, McClintock FA. Analysis of uncertainty in single-sample experiments. Mech Eng. 1953;75:3–9.

    Google Scholar 

  53. Brucker KA, Majdalani J. Equivalent thermal conductivity for compact heat sink models based on the Churchill and Chu correlation. IEEE Trans Compon Packag Technol. 2003;26(1):158–64.

    Google Scholar 

  54. Churchill SW, Churchill RU. A comprehensive correlating equation for heat and component transfer by free convection. AlChE J. 1975;21(3):604–6.

    CAS  Google Scholar 

  55. Churchill SW. Comprehensive, theoretically based, correlating equations for free convection from isothermal spheres. Chem Eng Commun. 1983;24(4–6):339–52.

    CAS  Google Scholar 

  56. Cole R. Boiling nucleation. Adv Heat Transf. 1974;10:85–166.

    CAS  Google Scholar 

  57. Forster HK, Zuber N. Dynamics of vapor bubbles and boiling heat transfer. AlChE J. 1955;1(4):531–5.

    CAS  Google Scholar 

  58. Kotthoff S, Gorenflo D, Danger E, Luke A. Heat transfer and bubble formation in pool boiling: effect of basic surface modifications for heat transfer enhancement. Int J Thermal Sci. 2006;45(3):217–36.

    CAS  Google Scholar 

  59. Jamialahmadi M, Blöchl R, Müller-Steinhagen H. Bubble dynamics and scale formation during boiling of aqueous calcium sulphate solutions. Chem Eng Process Process Intensif. 1989;26(1):15–26.

    CAS  Google Scholar 

  60. Prodanovic V, Fraser D, Salcudean M. Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates. Int J Multiph Flow. 2002;28(1):1–19.

    CAS  Google Scholar 

  61. Schlunder EU. Heat transfer in nucleate boiling of mixtures. Danbury: Begel House Inc; 1986.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2019R1G1A1100160). Also, the authors extend their appreciation to the Deanship of Scientific Research at Majmaah University, Saudi Arabia, for supporting this work under project number No. (RGP-2019–17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahidzal Dahari.

Ethics declarations

Conflict of interest

The authors of this work tend to declare that there is no conflict of interest regarding the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, M.R., Tlili, I., Gholamalizadeh, E. et al. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Therm Anal Calorim 143, 2453–2462 (2021). https://doi.org/10.1007/s10973-020-09911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09911-5

Keywords

Navigation