Skip to main content
Log in

Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy–Forchheimer scheme

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current paper on carbon nanotubes suspended magnetohydrodynamics micropolar dusty nanofluid impinging on a permeable extending sheet placed in a porous regime. The Darcy–Forchheimer scheme with heat source/sink and thermal radiation is taken into account. The shooting method is instrumental for obtaining numerical solutions of the transformed-converted system of nonlinear equations. The prescribed surface temperature (PST) and prescribed heat flux (PHF) boundary conditions are used. The impact of governing parameters on velocity, temperature, skin friction coefficient, Nusselt number, entropy generation rate and Bejan number are incorporated. The significant outcomes of the current investigation are that increment in the suction parameter decline the flow velocity and temperature (for both PST and PHF cases) while the injection uplift them. An enhancement in magnetic strength, the skin friction and heat transfer rate show the opposite trend for both SWCNT and MWCNT. Bejan number is increasing with the increase in nanoparticle volume fraction \(\phi\) for both SWCNT and MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

NF:

Nanofluid

NPs:

Nanoparticles

CNTs:

Carbon nanotubes

SWCNT:

Single-walls carbon nanotubes

MWCNT:

Multi-walls carbon nanotubes

MHD:

Magnetohydrodynamics

PDEs:

Partial differential equations

ODEs:

Ordinary differential equations

PST:

Prescribed surface temperature

PHF:

Prescribed heat flux

HTI:

Heat transfer irreversibility

FFI:

Fluid friction irreversibility

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the 1995, ASME international mechanical engineering congress & exposition, San Francisco, USA, ASME. 1995; p. 99–05 FED 231/MD 66.

  2. Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf. 2006;19:181–91.

    CAS  Google Scholar 

  3. Sakiadis BC. Boundary layer behavior on continuous solid surface: I. Boundary-layer equations for two dimensional and axisymmetric flow. AIChEJ. 1961;7:26–8.

    CAS  Google Scholar 

  4. Crane LJ. Flow past a stretching plane. Z Angew Math Phys. 1970;21:645–7.

    Google Scholar 

  5. Wang CY. The 3-dimensional flow due to a stretching flat surface. Phys Fluids. 1984;27:1915–7.

    Google Scholar 

  6. Rajagopal KR, Na TY, Gupta AS. Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta. 1984;23:213–5.

    Google Scholar 

  7. Kelson NA, Desseaux A. Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. Int J Eng Sci. 2001;39:1881–97.

    Google Scholar 

  8. Salem AM, Fathy R. Effect of thermal radiation on MHD mixed convective heat transfer adjacent to a vertical continuously stretching sheet in the presence of variable viscosity. J Korean Phys Soc. 2010;57:1401–7.

    CAS  Google Scholar 

  9. Hady FM, Ibrahim FS, Abdel-Gaied SM, Eid MR. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Nanoscale Res Lett. 2012;7:229.

    PubMed  PubMed Central  Google Scholar 

  10. Hady F, Eid MR, Ahmed MA. Slip effects on unsteady MHD stagnation point flow of a nanofluid over stretching sheet in a porous medium with thermal radiation. J Pure Appl Math Adv Appl. 2014;12(2):181–206.

    Google Scholar 

  11. Swain I, Mishra S, Pattanayak H. Flow over exponentially stretching sheet through porous medium with heat source/sink. J Eng. 2015; 452592.

  12. Hayat T, Khan MI, Alsaedi A, Khan MI. Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness. J Mol Liq. 2016;223:960–8.

    CAS  Google Scholar 

  13. Eid MR. Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation. J Mol Liq. 2016;220:718–25.

    CAS  Google Scholar 

  14. Eid MR. Time-dependent flow of water-NPs over a stretching sheet in a saturated porous medium in the stagnation-point region in the presence of chemical reaction. J Nanofluids. 2017;6(3):550–7.

    Google Scholar 

  15. Eid MR, Mahny KL. Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption. Adv Powder Technol. 2017;28(11):3063–73.

    CAS  Google Scholar 

  16. Yusuf TA, Mabood F. Slip effects and entropy generation on inclined MHD flow of Williamson fluid through a permeable wall with chemical reaction via DTM. Math Mod Eng Prob. 2020;7(1):1–9.

    Google Scholar 

  17. Mabood F, Imtiaz M, Hayat T. Features of Cattaneo–Christov heat flux model for stagnation point flow of a Jeffrey fluid impinging over a stretching sheet: a numerical study. Heat Transf-Asian Res. 2020. https://doi.org/10.1002/htj.21741.

    Article  Google Scholar 

  18. Eid MR, Mahny KL. Flow and heat transfer in a porous medium saturated with a Sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption. Heat Transf-Asian Res. 2018;47(1):54–71.

    Google Scholar 

  19. Eringen AC. Theory of micropolar fluids. J Math Mech. 1996;16:1–18.

    Google Scholar 

  20. Bhargava Kumar RL, Takhar HS. Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int J Eng Sci. 2003;41:2161–78.

    Google Scholar 

  21. El-Arabawy HAM. Effect of suction/injection on the flow of a micropolar fluid past a continuously moving plate in the presence of radiation. Int J Heat Mass Transf. 2003;46:1471–7.

    Google Scholar 

  22. Yacob NA, Ishak A, Pop I. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid. Comput Fluids. 2011;47:16–21.

    CAS  Google Scholar 

  23. Madani M, Khan Y, Fathizadeh Yildirim MA. Application of homotopy perturbation and numerical methods to the magneto-micropolar fluid flow in the presence of radiation. Eng Comput. 2012;29:277–94.

    Google Scholar 

  24. Rosali H, Ishak A, Pop I. Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction. Int Commun Heat Mass Transf. 2012;39:826–9.

    Google Scholar 

  25. Nering K, Rup K. The effect of nanoparticles added to heated micropolar fluid. Superlattices Microstruct. 2016;98:283–94.

    CAS  Google Scholar 

  26. Pal D, Mandal G. Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci. 2017;126:308–18.

    Google Scholar 

  27. Shehzad N, Zeeshan A, Ellahi R, Rashidi S. Modelling study on internal energy loss due to entropy generation for non-Darcy Poiseuille flow of silver-water nanofluid: an application of purification. Entropy. 2018;20(11):851.

    CAS  PubMed Central  Google Scholar 

  28. Zeeshan A, Shehzad N, Abbas T, Ellahi R. Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide-water nanofluid due to entropy generation. Entropy. 2019;21(3):236.

    CAS  PubMed Central  Google Scholar 

  29. Riaz A, Bhatti MM, Ellahi R, Zeeshan A, Sait SM. Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions. Symmetry. 2020;12(1):102.

    Google Scholar 

  30. Sajid MU, Ali HM, Sufy A. Experimental investigation of TiO2-water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    CAS  Google Scholar 

  31. Acharya N, Das K, Kundu PK. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel: a thermal framework. J Therm Anal Calorim. 2019;138(1):461–77.

    CAS  Google Scholar 

  32. Mabood F, Yusuf AT, Khan WA. Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and non-linear thermal radiation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09720-w(in press).

    Article  Google Scholar 

  33. Animasaun IL, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135(2):873–86.

    CAS  Google Scholar 

  34. Eid MR, Mahny KL, Muhammad T, Sheikholeslami M. Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results Phys. 2018;8:1185–93.

    Google Scholar 

  35. Eid MR, Makinde OD. Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species. Int J Chem React Eng. 2018;16(9):20170212.

    CAS  Google Scholar 

  36. Muhammad T, Lu DC, Mahanthesh B, Eid MR, Ramzan M, Dar A. Significance of Darcy–Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys. 2018;70(3):361.

    CAS  Google Scholar 

  37. Mabood F, Nayak MK, Chamkha AJ. Heat transfer on the cross flow of Micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. Eur Phys J Plus. 2019;134(9):427.

    CAS  Google Scholar 

  38. Al-Hossainy AF, Eid MR, Zoromba MS. SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium. Phys Scr. 2019;94:105208.

    CAS  Google Scholar 

  39. Boumaiza N, Kezzar M, Eid MR, Tabet I. On numerical and analytical solutions for mixed convection Falkner–Skan flow of nanofluids with variable thermal conductivity. Waves Rand Compl. 2019. https://doi.org/10.1080/17455030.2019.1686550.

    Article  Google Scholar 

  40. Eid MR, Al-Hossainy AF, Zoromba MS. FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation. Commun Theor Phys. 2019;71:1425–34.

    CAS  Google Scholar 

  41. Lahmar S, Kezzar M, Eid MR, Sari MR. Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity. Phys A: Stat Mech Appl. 2020;540:123138.

    Google Scholar 

  42. Eid MR, Mahny KL, Dar A, Muhammad T. Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species. Phys A: Stat Mech Appl. 2020;540:123063.

    Google Scholar 

  43. Marble FE. Dynamics of dusty gases. Ann Rev Fluid Mech. 1970;2:397–446.

    Google Scholar 

  44. Makinde OD, Chinyoka T. MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition. Comput Math Appl. 2010;60:660–9.

    Google Scholar 

  45. Gireesha BJ, Chamkha AJ, Manjunatha S, Bagewadi CS. Mixed convective flow of a dusty fluid over a vertical stretching sheet with non-uniform heat source/sink and radiation. Int J Numer Methods Heat Fluid Flow. 2013;23:598–612.

    Google Scholar 

  46. Hazarika GC, Konch J. Effects of variable viscosity and thermal conductivity on magnetohydrodynamic free convection dusty fluid along a vertical porous plate with heat generation. Turk J Phys. 2016;40:52–68.

    CAS  Google Scholar 

  47. Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng Sci Technol. 2017;20:1129–39.

    Google Scholar 

  48. Ghadikolaei S, Hosseinzadeh K, Hatami M, Ganji DD. MHD boundary layer analysis for micropolar dusty fluid containing Hybrid nanoparticles (Cu-Al2O3) over a porous medium. J Mol Liq. 2018;268:813–23.

    CAS  Google Scholar 

  49. Xu L, Lee EWM. Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet. Abstr Appl Anal. 2013;2013:573782.

    Google Scholar 

  50. Mabood F, Mastroberardino A. Melting heat transfer on MHD convective flow of a nanofluid over a stretching sheet with viscous dissipation and second order slip. J Taiwan Instit Chem Eng. 2015;57:62–8.

    CAS  Google Scholar 

  51. Ishak A, Nazar R, Pop I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 2008;44:921–7.

    Google Scholar 

  52. Mabood F, Ibrahim SM, Rashidi MM, Shadloo MS, Lorenzini G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with Radiation. Int J Heat Mass Transf. 2016;93:674–82.

    Google Scholar 

  53. Saif RS, Hayat T, Ellahi R, Muhammad T, Alsaedi A. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int J Numer Methods Heat Fluid Flow. 2019;29(1):2–20.

    Google Scholar 

  54. Muhammad T, Alamri SZ, Waqas H, Habib D, Ellahi R. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J Therm Anal Calorim. 2020;1:13. https://doi.org/10.1007/s10973-020-09580-4.

    Article  CAS  Google Scholar 

  55. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020;1:16. https://doi.org/10.1007/s10973-020-09459-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Eid.

Ethics declarations

Conflict of interest

The author reports that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, M.R., Mabood, F. Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy–Forchheimer scheme. J Therm Anal Calorim 143, 2419–2436 (2021). https://doi.org/10.1007/s10973-020-09928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09928-w

Keywords

Navigation