Skip to main content
Log in

Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids with various particle mass ratios

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hybridization of nanoparticles is a concept employed for the improvement of the thermal properties of nanofluids. Presently, there is a scarcity of studies in the open literature concerning the influence of particle mass ratios of hybrid nanofluids on the thermal properties. Thus, this paper investigated the effect of temperatures (15–55 °C) and particle mass ratios (90:10, 80:20, 60:40, 40:60, and 20:80) on the viscosity and electrical conductivity of deionized water (DIW)-based γ-Al2O3 and MWCNT hybrid nanofluids. A two-process strategy was deployed to prepare the hybrid nanofluids at a volume concentration of 0.1%. The hybrid nanofluids were characterized for their morphology using a transmission electron microscope. Hybrid nanofluid stability was monitored using UV visible spectrophotometer, viscosity, and visual inspection methods. The prepared nanofluids were observed to be stable with relatively constant viscosity and absorbance values. At 55 °C, maximum enhancements of 442.9% and 26.3%, and 288.0% and 19.3% were recorded for the electrical conductivity and viscosity of Al2O3–MWCNT/DIW nanofluids at particle mass ratios of 90:10 and 20:80, respectively, in relation to DIW. Temperature increase was observed to significantly reduce the viscosity of hybrid nanofluids while the particle mass ratio considerably and positively impacted the electrical conductivity. The relatively low viscosity of the hybrid nanofluids coupled with its reduction under increasing temperature and its insignificance increase as the particle mass ratio of the Al2O3 nanoparticles increased to make them viable coolants for engineering applications. New correlations were proposed to accurately estimate the viscosity and electrical conductivity of the hybrid nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Ag:

Silver nanoparticles

Al2O3 :

Aluminum oxide nanoparticles

Au:

Gold nanoparticles

C:

Carbon

CNT:

Carbon nanoparticle

Cu:

Copper nanoparticles

CuO:

Copper oxide nanoparticles

DIW:

Deionized water

DW:

Distilled water

EG:

Ethylene glycol

EO:

Engine oil

Fe2O3 :

Iron (III) oxide nanoparticles

GL:

Glycerol

GO:

Graphene oxide

h:

Hour

ID:

Inner diameter

L:

Length

M:

Mass (kg)

MgO:

Magnesium oxide nanoparticles

MWCNT:

Multiwalled carbon nanoparticle

ND:

Nanodiamond

Ni:

Nickel nanoparticles

OD:

Outer diameter

PMR:

Particle mass ratio

PWR:

Particle mass ratio

PWR:

Particle mass ratio

SDS:

Sodium dodecyl sulfate

SiC:

Silicon carbide

SiO2 :

Silicon oxide nanoparticles

T:

Temperature (°C)

TiO2 :

Titanium oxide nanoparticles

W:

Water

X:

Percent mass ratio

Zn:

Zinc nanoparticles

ZnO:

Zinc oxide nanoparticles

φ :

Volume concentration (vol%)

μ :

Viscosity (mPa s)

κ :

Thermal conductivity (W m−1 K−1)

σ :

Electrical conductivity (mS cm−1)

ρ :

Density (g cm−3)

hnf:

Hybrid nanofluid

nf:

Nanofluid

bf:

Base fluid

en:

Enhancement

rel:

Relative

References

  1. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7(4):227–33. https://doi.org/10.2963/jjtp.7.227.

    Article  CAS  Google Scholar 

  2. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20. https://doi.org/10.1063/1.1341218.

    Article  CAS  Google Scholar 

  3. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo. 1995;66:99–105. https://doi.org/10.1115/1.1532008.

    Article  CAS  Google Scholar 

  4. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9. https://doi.org/10.1115/1.2825978.

    Article  CAS  Google Scholar 

  5. Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci. 2005;30:109–16. https://doi.org/10.1016/j.expthermflusci.2005.03.021.

    Article  CAS  Google Scholar 

  6. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:1–4. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

  7. Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK. Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids. J Mol Liq. 2011;163:27–32. https://doi.org/10.1016/j.molliq.2011.07.007.

    Article  CAS  Google Scholar 

  8. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402. https://doi.org/10.1016/j.expthermflusci.2007.05.001.

    Article  CAS  Google Scholar 

  9. Adio SA, Sharifpur M, Meyer JP. Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bull Mater Sci. 2015;38:1345–57. https://doi.org/10.1007/s12034-015-1020-y.

    Article  CAS  Google Scholar 

  10. Sharifpur M, Yousefi S, Meyer JP. A new model for density of nanofluids including nanolayer. Int Commun Heat Mass Transf. 2016;78:168–74. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.010.

    Article  CAS  Google Scholar 

  11. Shoghl NS, Jamali J, Moraveji KM. Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp Therm Fluid Sci. 2016;74:339–46. https://doi.org/10.1016/j.expthermflusci.2016.01.004.

    Article  CAS  Google Scholar 

  12. NietoDeCastro CA, Murshed SMS, Lourenço MJV, Santos FJV, Lopes MLM, França JMP. Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids. Int J Therm Sci. 2012;62:34–9. https://doi.org/10.1016/j.ijthermalsci.2012.03.010.

    Article  CAS  Google Scholar 

  13. Fal J, Barylyak A, Besaha K, Bobitski YV, Cholewa M, Zawlik I, Szmuc K, Cebulski J, Żyła G. Experimental investigation of electrical conductivity and permittivity of SC-TiO2-EG nanofluids. Nanoscale Res Lett. 2016;11:1–9. https://doi.org/10.1186/s11671-016-1590-7.

    Article  CAS  Google Scholar 

  14. Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11:630–49. https://doi.org/10.1080/17458080.2015.1107194.

    Article  CAS  Google Scholar 

  15. Said Z. Thermophysical and optical properties of SWCNTS nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.017.

    Article  CAS  Google Scholar 

  16. Abdolbaqi MK, Mamat R, Sidik NAC, Azmi WH, Selvakumar P. Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of bioglycol/water based TiO2 nanofluids in flat tubes. Int J Heat Mass Transf. 2017;108:1026–35. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.024.

    Article  CAS  Google Scholar 

  17. Abdolbaqi MK, Azmi WH, Mamat R, Sharma KV, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of bioglycol–water mixture based Al2O3 nanofluid. Appl Therm Eng. 2016;102:932–41. https://doi.org/10.1016/j.applthermaleng.2016.03.074.

    Article  CAS  Google Scholar 

  18. Nor S, Azis N, Jasni J, Kadir M, Yunus R, Yaakub Z. Investigation on the electrical properties of palm oil and coconut oil based TiO2 nanofluids. IEEE Trans Dielectr Electr Insul. 2017;24:3432–42. https://doi.org/10.1109/TDEI.2017.006295.

    Article  CAS  Google Scholar 

  19. Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1–2):45–55. https://doi.org/10.1016/j.tca.2007.06.009.

    Article  CAS  Google Scholar 

  20. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp. 2011;388:41–8. https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  CAS  Google Scholar 

  21. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39:3885–91. https://doi.org/10.1016/j.ceramint.2012.10.232.

    Article  CAS  Google Scholar 

  22. Tariq S, Ali H, Akram M. Thermal applications of hybrid phase change materials (HPCMs)—a critical review. Therm Sci. 2020;24:2151–69. https://doi.org/10.2298/tsci190302112t.

    Article  Google Scholar 

  23. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M. Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Therm Eng. 2020;2020:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305.

    Article  Google Scholar 

  24. Minea AA. Pumping power and heat transfer efficiency evaluation on Al2O3, TiO2 and SiO2 single and hybrid water-based nanofluids for energy application. J Therm Anal Calorim. 2020;139:1171–81. https://doi.org/10.1007/s10973-019-08510-3.

    Article  CAS  Google Scholar 

  25. Esfe HM, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int Commun Heat Mass Transf. 2015;69:29–33. https://doi.org/10.1016/j.icheatmasstransfer.2015.10.005.

    Article  CAS  Google Scholar 

  26. Esfe HM, Saedodin S, Yan WM, Afrand M, Sina N. Erratumto: study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60. https://doi.org/10.1007/s10973-016-5423-9.

    Article  CAS  Google Scholar 

  27. Esfe HM, Sarlak MR. Experimental Investigation of switchable behavior of CuO-MWCNT (85%–15%)/10 W-40 hybrid nano-lubricants for applications in internal combustion engines. J Mol Liq. 2017;242:326–35. https://doi.org/10.1016/j.molliq.2017.06.075.

    Article  CAS  Google Scholar 

  28. Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int J Heat Mass Transf. 2018;124:742–51. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.103.

    Article  CAS  Google Scholar 

  29. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036.

    Article  CAS  Google Scholar 

  30. Minea AA. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials. 2019;9:1–22. https://doi.org/10.3390/nano9111592.

    Article  CAS  Google Scholar 

  31. Rostami S, Nadooshan AA, Raisi A. An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives. Powder Technol. 2019;345:658–67. https://doi.org/10.1016/j.powtec.2019.01.055.

    Article  CAS  Google Scholar 

  32. Giwa SO, Sharifpur M, Meyer JP. Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3-MWCNT/water in a differentially heated square cavity. Int J Heat Mass Transf. 2020;148:119072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072.

    Article  CAS  Google Scholar 

  33. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003.

    Article  CAS  Google Scholar 

  34. Dardan E, Afrand M, Isfahani AHM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34. https://doi.org/10.1016/j.applthermaleng.2016.08.103.

    Article  CAS  Google Scholar 

  35. Kannaiyan S, Boobalan C, Umasankaran A, Ravirajan A, Sathyan S, Thomas T. Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J Mol Liq. 2017;244:469–77. https://doi.org/10.1016/j.molliq.2017.09.035.

    Article  CAS  Google Scholar 

  36. Akilu S, Baheta AT, Mior MA, Minea AA, Sharma KV. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol Energy Mater Sol Cells. 2018;179:118–28. https://doi.org/10.1016/j.solmat.2017.10.027.

    Article  CAS  Google Scholar 

  37. Rostami S, Nadooshan AA, Raisi A. The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol. J Therm Anal Calorim. 2020;139:2353–64. https://doi.org/10.1007/s10973-019-08569-y.

    Article  CAS  Google Scholar 

  38. Chereches EI, Minea AA. Electrical conductivity of new nanoparticle enhanced fluids: an experimental study. Nanomaterials. 2019;9:1–15. https://doi.org/10.3390/nano9091228.

    Article  CAS  Google Scholar 

  39. Alarifi IM, Alkouh AB, Ali V, Nguyen HM, Asadi A. On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles. Powder Technol. 2019;355:157–62. https://doi.org/10.1016/j.powtec.2019.07.039.

    Article  CAS  Google Scholar 

  40. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Calorim. 2019;136:199–209. https://doi.org/10.1007/s10973-018-7840-4.

    Article  CAS  Google Scholar 

  41. Goodarzi M, Toghraie D, Reiszadeh M, Afrand M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J Therm Anal Calorim. 2019;136:513–25. https://doi.org/10.1007/s10973-018-7707-8.

    Article  CAS  Google Scholar 

  42. Mechiri SK, Vasu V, Gopal AV. Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp Heat Transf. 2017;30:205–17. https://doi.org/10.1080/08916152.2016.1233147.

    Article  CAS  Google Scholar 

  43. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087.

    Article  CAS  Google Scholar 

  44. Aparna Z, Michael M, Pabi SK, Ghosh S. Thermal conductivity of aqueous Al2O3/Ag hybrid nano fluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol. 2019;343:714–22. https://doi.org/10.1016/j.powtec.2018.11.096.

    Article  CAS  Google Scholar 

  45. Wole-Osho I, Okonkwo EC, Adun H, Kavaz D, Abbasoglu S. An intelligent approach to predicting the effect of nanoparticle mixture ratio, concentration and temperature on thermal conductivity of hybrid nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09594-y.

    Article  Google Scholar 

  46. Ghodsinezhad H, Sharifpur M, Meyer JP. Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Int Commun Heat Mass Transf. 2016;76:316–24. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.005.

    Article  CAS  Google Scholar 

  47. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53. https://doi.org/10.1016/j.ijthermalsci.2010.02.013.

    Article  CAS  Google Scholar 

  48. Garbadeen ID, Sharifpur M, Slabber JM, Meyer JP. Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int Commun Heat Mass Transf. 2017;88:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.019.

    Article  CAS  Google Scholar 

  49. Joshi P, Pattamatta A. An experimental study on buoyancy induced convective heat transfer in a square cavity using multi-walled carbon nanotube (MWCNT)/water nanofluid. In: Journal of physics: conference series, vol 745, no 1, p 032033. 2016. https://doi.org/10.1088/1742-6596/745/3/032033.

  50. Suresh S, Venkitaraj KPP, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007.

    Article  CAS  Google Scholar 

  51. Popiel CO, Wojtkowiak J. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 to 150 °C). Heat Transf Eng. 1998;19:87–101. https://doi.org/10.1080/01457639808939929.

    Article  CAS  Google Scholar 

  52. Solomon AB, van Rooyen J, Rencken M, Sharifpur M, Meyer JP. Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with Al2O3/water nanofluids. Int Commun Heat Mass Transf. 2017;88:254–61. https://doi.org/10.1016/j.icheatmasstransfer.2017.09.007.

    Article  CAS  Google Scholar 

  53. Kumar PG, Kumaresan V, Velraj R. Stability, viscosity, thermal conductivity, and electrical conductivity enhancement of multi-walled carbon nanotube nanofluid using gum arabic. Fullerenes Nanotub Carbon Nanostruct. 2017;25:230–40. https://doi.org/10.1080/1536383X.2017.1283615.

    Article  CAS  Google Scholar 

  54. Menbari A, Alemrajabi AA, Ghayeb Y. Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/water binary mixture nanofluid. Exp Therm Fluid Sci. 2016;74:122–9. https://doi.org/10.1016/j.expthermflusci.2015.11.025.

    Article  CAS  Google Scholar 

  55. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Aziz REA. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12:227–34. https://doi.org/10.1016/j.hbrcj.2014.12.001.

    Article  Google Scholar 

  56. Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nanopart Res. 2015;17:1–17. https://doi.org/10.1007/s11051-015-3062-x.

    Article  Google Scholar 

  57. Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf. 2016;73:75–83. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.006.

    Article  CAS  Google Scholar 

  58. Ganguly S, Sikdar S, Basu S. Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol. 2009;196:326–30. https://doi.org/10.1016/j.powtec.2009.08.010.

    Article  CAS  Google Scholar 

  59. Sundar LS, Shusmitha K, Singh MK, Sousa ACM. Electrical conductivity enhancement of nanodiamond-nickel (ND-Ni) nanocomposite based magnetic nanofluids. Int Commun Heat Mass Transf. 2014;57:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.003.

    Article  CAS  Google Scholar 

  60. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina—ferrofluid: experimental data, modeling through enhanced ann, anfis, and curve fitting. J Therm Anal Calorim. 2020;2020:0123456789. https://doi.org/10.1007/s10973-020-09372-w.

    Article  CAS  Google Scholar 

  61. Qing SH, Rashmi W, Khalid M, Gupta TCSM, Nabipoor M, Hajibeigy MT. Thermal conductivity and electrical properties of hybrid SiO2–graphene naphthenic mineral oil nanofluid as potential transformer oil. Mater Res Express. 2017;4:015504. https://doi.org/10.1088/2053-1591/aa550e.

    Article  CAS  Google Scholar 

  62. Sharifpur M, Adio SA, Meyer JP. Experimental investigation and model development for effective viscosity of Al2O3-glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf. 2015;68:208–19. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.002.

    Article  CAS  Google Scholar 

  63. Esfe MH, Raki HR, Emami MRS, Afrand M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 2019;342:808–16. https://doi.org/10.1016/j.powtec.2018.10.032.

    Article  CAS  Google Scholar 

  64. Giwa SO, Sharifpur M, Meyer JP. Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Appl Therm Eng. 2020;170:115004. https://doi.org/10.1016/j.applthermaleng.2020.115004.

    Article  CAS  Google Scholar 

  65. Sundar LS, Singh MK, Sousa ACM. Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: an experimental study. Int J Heat Mass Transf. 2018;117:223–34. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.109.

    Article  CAS  Google Scholar 

  66. Sundar LS, Sousa ACM, Singh MK. Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J Therm Sci Eng Appl. 2015;7:021015. https://doi.org/10.1115/1.4029622.

    Article  CAS  Google Scholar 

  67. Halelfadl S, Mare T, Estelle P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci. 2014;53:104–10. https://doi.org/10.1016/j.expthermflusci.2013.11.010.

    Article  CAS  Google Scholar 

  68. Nabil MF, Azmi WH, Hamid KA, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.024.

    Article  CAS  Google Scholar 

  69. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig. 2018;89:11–21. https://doi.org/10.1016/j.ijrefrig.2018.01.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding received from the National Research Foundation of South Africa under the Renewable and Sustainable Energy Doctoral Scholarships is hereby acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, S.O., Sharifpur, M., Meyer, J.P. et al. Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids with various particle mass ratios. J Therm Anal Calorim 143, 1037–1050 (2021). https://doi.org/10.1007/s10973-020-10041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10041-1

Keywords

Navigation