Skip to main content
Log in

4E analysis and three-objective optimization for selection of the best prime mover in smart energy systems for residential applications: a comparison of four different scenarios

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, using integrated energy systems for residential-scale applications has been of great interest to the researchers. The objective of this study is the proposal, techno-economic analysis, and optimization of the best prime mover for the residential scale combined cooling, heating, and power generation system (CCHP). Different prime movers consisting of solid oxide fuel cell (SOFC), internal combustion engine (ICE), microgas turbine (MGT), and hybrid SOFC/GT system for power production are integrated with HRSG and double effect Li/Br refrigeration system for heating and cooling generation, respectively. A parametric study is conducted on the best case to find the key decision variables. Also, a very cutting-edge optimization, which is 3D multi-objective optimization, is carried out for minimizing the unit product cost and emission and maximizing the exergetic efficiency. Results revealed that the hybrid SOFC/GT has higher exergy efficiency of 69.06% and unit product cost of 37.78 $ GJ−1, among other case studies. Also, optimization results indicate a maximum exergy efficiency of 73.15%, and a minimum cost of 25.08 ($ GJ−1) can be reached for the SOFC-/GT-based CCHP system. Moreover, the optimized emission for the best-case scenario becomes 62.52 g MWh−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The data and other material related to this paper will be available upon request.

Abbreviations

A :

Area, m2

c :

Specific exergy cost, $ GJ−1

Ċ :

Cost rate, $ h−1

\(\dot{E}\) :

Exergy rate, kW

f :

Exergoeconomic factor

F :

Faraday constant, C mol−1

\(\Delta \bar{g}^{0}\) :

Change in molar Gibbs free energy, J/mol

h :

Enthalpy

i r :

Interest rate

j :

Current density, A m−2

J :

PEME current density

K :

Equilibrium constant

LHVf :

Fuel lower heating value

M :

Molar mass

f :

Fuel mass flow rate

N :

Operating hours, h

\(n_{1} ,n_{2} , \ldots ,n_{7}\) :

Mole number of reaction components

n e :

Number of electrons produced per hydrogen mole

:

Molar flow rate

N C :

Number of cells in the stack

P :

Pressure

PR:

Pressure ratio

\(p_{{{\text{H}}_{ 2} {\text{O}}}}\) :

Partial pressure of H2O

\(p_{{{\text{H}}_{ 2} }}\) :

Partial pressure of H2

\(p_{{{\text{O}}_{ 2} }}\) :

Partial pressure of O2

\(\dot{Q}_{\text{high}}\) :

Heat rate of the heater inside the Stirling engine, kW

\(\dot{Q}_{\text{loss}}\) :

Heat loss rate of cooler inside the Stirling engine, kW

R :

Total ohmic resistance

R AR :

Anode recycling ratio

R CR :

Cathode recycling ratio

\(\bar{R}\) :

Universal gas constant, J mol-1 K

RV:

Piston compression ratio of Stirling engine

s :

Specific entropy

T :

Temperature

T g :

Gasification temperature

U f :

Fuel utilization ratio

V :

Voltage, V

V 0 :

Reversible potential

V C :

Cell voltage, V

V loss :

Loss voltage, V

V N :

Reversible cell voltage, V

w :

Mole fraction of moisture in the biomass (kmol/kmol)

:

Power, kW

y i :

Molar fraction

y r :

Extent of water gas shift reaction, mol/s

x r :

Extent of steam reforming reaction for methane, mol/s

Ż :

Cost rate of components, $ h−1

Ż CI :

Capital investment cost rate of components, $ h−1

Ż OM :

Operating and maintenance cost rate of components, $ h−1

ch:

Chemical

ph:

Physical

0:

Dead state

act:

Activation

AB:

Afterburner

AC:

Air blower

an:

Anode

AHX:

Air heat exchanger

ca:

Cathode

CEPI:

Chemical Engineering Plant Cost Index

conc:

Concentration

CRF:

Capital recovery factor

D:

Destruction

e:

Electrolyte

FC:

Fuel blower

FHX:

Fuel heat exchanger

HS, gas:

Highest Stirling gas temperature

i:

Inlet

INV:

DC to AC inverter

k:

kth component

L:

Loss

LS, gas:

Lowest Stirling gas temperature

MC:

Moisture content

PM:

Prime mover

GT:

Gas turbine

CCHP:

Combined cooling heating and power

CHP:

Combined heating and power

ICE:

Internal combustion engine

PY:

Present year

R:

Reforming

S:

Shifting

SOFC:

Solid oxide fuel cell

SE:

Stirling engine

tot:

Total

η pcy :

Polytrophic efficiency

η mech, SE :

Stirling mechanical efficiency

ε :

Emission indicator

ε SE :

Heater efficiency inside the Stirling engine

ζ :

Lowest to highest temperature of Stirling engine

γ :

Ratio of specific heats

η I :

Energy efficiency

η II :

Exergy efficiency

φ :

Maintenance factor

τ :

Annual plant operation hours

σ :

Total ionic conductivity

λ :

Content of water

References

  1. Rahmati A, Varedi-Koulaei SM, Ahmadi MH, Ahmadi H. Dimensional synthesis of the Stirling engine based on optimizing the output work by evolutionary algorithms. Energy Rep. 2020;6:1468–86. https://doi.org/10.1016/J.EGYR.2020.05.030.

    Article  Google Scholar 

  2. Motahar S, Bagheri-Esfeh H. Artificial neural network based assessment of grid-connected photovoltaic thermal systems in heating dominated regions of Iran. Sustain. Energy Technol. Assess. 2020;39:100694. https://doi.org/10.1016/J.SETA.2020.100694.

    Article  Google Scholar 

  3. Safari F, Javani N, Yumurtaci Z. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int J Hydrogen Energy. 2018;43:1071–80. https://doi.org/10.1016/J.IJHYDENE.2017.05.102.

    Article  CAS  Google Scholar 

  4. Gholamian E, Mahmoudi SMS, Zare V. Proposal, exergy analysis and optimization of a new biomass-based cogeneration system. Appl Therm Eng. 2016;93:223–35. https://doi.org/10.1016/j.applthermaleng.2015.09.095.

    Article  CAS  Google Scholar 

  5. Kaldehi BJ, Keshavarz A, Pirooz AAS, Batooei A, Ebrahimi M. Designing a micro Stirling engine for cleaner production of combined cooling heating and power in residential sector of different climates. J Clean Prod. 2017;154:502–16. https://doi.org/10.1016/j.jclepro.2017.04.006.

    Article  CAS  Google Scholar 

  6. Mojaver P, Khalilarya S, Chitsaz A, Assadi M. Multi-objective optimization of a power generation system based SOFC using Taguchi/AHP/TOPSIS triple method. Sustain Energy Technol Assess. 2020;38:100674. https://doi.org/10.1016/J.SETA.2020.100674.

    Article  Google Scholar 

  7. Abbasi M, Chahartaghi M, Hashemian SM. Energy, exergy, and economic evaluations of a CCHP system by using the internal combustion engines and gas turbine as prime movers. Energy Convers Manag. 2018;173:359–74. https://doi.org/10.1016/J.ENCONMAN.2018.07.095.

    Article  Google Scholar 

  8. Cai B, Li H, Hu Y, Zhang G. Operation strategy and suitability analysis of CHP system with heat recovery. Energy Build. 2017;141:284–94. https://doi.org/10.1016/j.enbuild.2017.02.056.

    Article  Google Scholar 

  9. Mehrpooya M, Sadeghzadeh M, Rahimi A, Pouriman M. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology—a building application. Energy Convers Manag. 2019;198:111767. https://doi.org/10.1016/J.ENCONMAN.2019.06.078.

    Article  Google Scholar 

  10. Wang Z, Han W, Zhang N, Liu M, Jin H. Proposal and assessment of a new CCHP system integrating gas turbine and heat-driven cooling/power cogeneration. Energy Convers Manag. 2017;144:1–9. https://doi.org/10.1016/J.ENCONMAN.2017.04.043.

    Article  Google Scholar 

  11. Li L, Mu H, Gao W, Li M. Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings. Appl Energy. 2014;136:206–16. https://doi.org/10.1016/J.APENERGY.2014.09.020.

    Article  Google Scholar 

  12. Jing R, Wang M, Brandon N, Zhao Y. Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China. Energy. 2017;141:273–89. https://doi.org/10.1016/J.ENERGY.2017.08.111.

    Article  Google Scholar 

  13. Abbasi MH, Sayyaadi H, Tahmasbzadebaie M. A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application. Appl Therm Eng. 2018;135:389–405. https://doi.org/10.1016/j.applthermaleng.2018.02.062.

    Article  Google Scholar 

  14. Petreanu I, Ebrasu D, Sisu C, Varlam M. Thermal analysis of sulfonated polymers tested as polymer electrolyte membrane for PEM fuel cells. J Therm Anal Calorim. 2012;110:335–9. https://doi.org/10.1007/s10973-012-2442-z.

    Article  CAS  Google Scholar 

  15. Singh OK. Combustion simulation and emission control in natural gas fuelled combustor of gas turbine. J Therm Anal Calorim. 2016;125:949–57. https://doi.org/10.1007/s10973-016-5472-0.

    Article  CAS  Google Scholar 

  16. Farahnak M, Farzaneh-Gord M, Deymi-Dashtebayaz M, Dashti F. Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes. Appl Energy. 2015;158:203–19. https://doi.org/10.1016/J.APENERGY.2015.08.050.

    Article  Google Scholar 

  17. Feng L, Dai X, Mo J, Shi L. Performance assessment of CCHP systems with different cooling supply modes and operation strategies. Energy Convers Manag. 2019;192:188–201. https://doi.org/10.1016/J.ENCONMAN.2019.04.048.

    Article  Google Scholar 

  18. Moghimi M, Emadi M, Ahmadi P, Moghadasi H. 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration. Appl Therm Eng. 2018;141:516–30. https://doi.org/10.1016/J.APPLTHERMALENG.2018.05.075.

    Article  Google Scholar 

  19. Lara Y, Petrakopoulou F, Morosuk T, Boyano A, Tsatsaronis G. An exergy-based study on the relationship between costs and environmental impacts in power plants. Energy. 2017;138:920–8. https://doi.org/10.1016/J.ENERGY.2017.07.087.

    Article  Google Scholar 

  20. Ansarinasab H, Mehrpooya M, Sadeghzadeh M. An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses. J Clean Prod. 2019;210:530–41. https://doi.org/10.1016/J.JCLEPRO.2018.11.090.

    Article  CAS  Google Scholar 

  21. Ahmadi MH, Nazari MA, Sadeghzadeh M, Pourfayaz F, Ghazvini M, Ming T, Meyer JP, Sharifpur M. Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: a review. Energy Sci Eng. 2019;7:30–65. https://doi.org/10.1002/ese3.223.

    Article  Google Scholar 

  22. Al Moussawi H, Fardoun F, Louahlia H. 4-E based optimal management of a SOFC-CCHP system model for residential applications. Energy Convers Manag. 2017;151(2017):607–29. https://doi.org/10.1016/j.enconman.2017.09.020.

    Article  CAS  Google Scholar 

  23. Yousefi H, Ghodusinejad MH, Kasaeian A. Multi-objective optimal component sizing of a hybrid ICE + PV/T driven CCHP microgrid. Appl Therm Eng. 2017;122:126–38. https://doi.org/10.1016/J.APPLTHERMALENG.2017.05.017.

    Article  CAS  Google Scholar 

  24. Rey G, Ulloa C, Cacabelos A, Barragáns B. Performance analysis, model development and validation with experimental data of an ICE-based micro-CCHP system. Appl Therm Eng. 2015;76:233–44. https://doi.org/10.1016/J.APPLTHERMALENG.2014.10.087.

    Article  Google Scholar 

  25. Luo XJ, Fong KF. Development of multi-supply-multi-demand control strategy for combined cooling, heating and power system primed with solid oxide fuel cell-gas turbine. Energy Convers Manag. 2017;154:538–61. https://doi.org/10.1016/J.ENCONMAN.2017.11.032.

    Article  Google Scholar 

  26. Chen X, Zhou H, Li W, Yu Z, Gong G, Yan Y, Luo L, Wan Z, Ding Y. Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system. Energy Convers Manag. 2018;160:384–95. https://doi.org/10.1016/J.ENCONMAN.2018.01.050.

    Article  Google Scholar 

  27. Chitgar N, Emadi MA, Chitsaz A, Rosen MA. Investigation of a novel multigeneration system driven by a SOFC for electricity and fresh water production. Energy Convers Manag. 2019;196:296–310. https://doi.org/10.1016/J.ENCONMAN.2019.06.006.

    Article  CAS  Google Scholar 

  28. Behzadi A, Gholamian E, Houshfar E, Ashjaee M, Habibollahzade A. Thermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production. Energy Equip. Syst. 2018;6:413–27. https://doi.org/10.22059/ees.2018.33319.

    Article  Google Scholar 

  29. Jokar MA, Ahmadi MH, Sharifpur M, Meyer JP, Pourfayaz F, Ming T. Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system. Energy Convers Manag. 2017;153:538–56. https://doi.org/10.1016/J.ENCONMAN.2017.10.027.

    Article  CAS  Google Scholar 

  30. Safari F, Dincer I. Development and analysis of a novel biomass-based integrated system for multigeneration with hydrogen production. Int J Hydrogen Energy. 2019;44:3511–26. https://doi.org/10.1016/J.IJHYDENE.2018.12.101.

    Article  CAS  Google Scholar 

  31. Beigzadeh M, Pourfayaz F, Ahmadi MH. Modeling and improvement of solid oxide fuel cell-single effect absorption chiller hybrid system by using nanofluids as heat transporters. Appl Therm Eng. 2020;166:114707. https://doi.org/10.1016/J.APPLTHERMALENG.2019.114707.

    Article  CAS  Google Scholar 

  32. Behzadi A, Habibollahzade A, Ahmadi P, Gholamian E, Houshfar E. Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production. Energy. 2019;169:696–709. https://doi.org/10.1016/J.ENERGY.2018.12.047.

    Article  CAS  Google Scholar 

  33. Gholamian E, Zare V. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and organic rankine cycles. Energy Convers Manag. 2016;117:150–61. https://doi.org/10.1016/j.enconman.2016.03.011.

    Article  CAS  Google Scholar 

  34. Gholamian E, Zare V, Mousavi SM. Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: a thermodynamic and environmental analysis. Int J Hydrogen Energy. 2016. https://doi.org/10.1016/j.ijhydene.2016.07.217.

    Article  Google Scholar 

  35. Gholamian E, Hanafizadeh P, Ahmadi P, Mazzarella L. A transient optimization and techno-economic assessment of a building integrated combined cooling, heating and power system in Tehran. Energy Convers Manag. 2020;217:112962. https://doi.org/10.1016/J.ENCONMAN.2020.112962.

    Article  Google Scholar 

  36. Behzadi A, Arabkoohsar A. Comparative performance assessment of a novel cogeneration solar-driven building energy system integrating with various district heating designs. Energy Convers Manag. 2020;220:113101. https://doi.org/10.1016/J.ENCONMAN.2020.113101.

    Article  Google Scholar 

  37. Al-Khori K, Bicer Y, Koç M. Integration of solid oxide fuel cells into oil and gas operations: needs, opportunities, and challenges. J Clean Prod. 2020;245:118924. https://doi.org/10.1016/J.JCLEPRO.2019.118924.

    Article  Google Scholar 

  38. Gholamian E, Hanafizadeh P, Ahmadi P. Exergo-economic analysis of a hybrid anode and cathode recycling SOFC/Stirling engine for aviation applications. Int. J. Sustain. Aviat. 2018;4:11. https://doi.org/10.1504/IJSA.2018.092915.

    Article  Google Scholar 

  39. Yari M, Mehr AS, Mahmoudi SMS, Santarelli M. A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester. Energy. 2016;114:586–602. https://doi.org/10.1016/j.energy.2016.08.035.

    Article  Google Scholar 

  40. Khani L, Mehr AS, Yari M, Mahmoudi SMS. Multi-objective optimization of an indirectly integrated solid oxide fuel cell-gas turbine cogeneration system. Int J Hydrogen Energy. 2016;41:21470–88. https://doi.org/10.1016/J.IJHYDENE.2016.09.023.

    Article  CAS  Google Scholar 

  41. Eshraghi A, Salehi G, Heibati S, Lari K. An assessment of the effect of different energy storage technologies on solar power generators for different power sale scenarios: the case of Iran. Sustain. Energy Technol. Assessments. 2019;34:62–7. https://doi.org/10.1016/J.SETA.2019.04.006.

    Article  Google Scholar 

  42. Sadaghiani MS, Ahmadi MH, Mehrpooya M, Pourfayaz F, Feidt M. Process development and thermodynamic analysis of a novel power generation plant driven by geothermal energy with liquefied natural gas as its heat sink. Appl Therm Eng. 2018;133:645–58. https://doi.org/10.1016/J.APPLTHERMALENG.2018.01.077.

    Article  Google Scholar 

  43. Bejan A, Moran MJ. Thermal design and optimization. Hoboken: Wiley; 1996.

    Google Scholar 

  44. Wu C, Wang SS, Feng XJ, Li J. Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle. Energy Convers Manag. 2017;148:360–77. https://doi.org/10.1016/j.enconman.2017.05.042.

    Article  CAS  Google Scholar 

  45. Balli O, Aras H, Hepbasli A. Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine: part I—Methodology. Energy Convers Manag. 2010;51:2252–9. https://doi.org/10.1016/j.enconman.2010.03.021.

    Article  CAS  Google Scholar 

  46. Indicators, Economic. “Marshall&Swift equipment cost index.” Chem Eng 72 (2011).

  47. Dinçer I, Rosen M, Ahmadi P. Optimization of energy systems. Hoboken: Wiley; 2017.

    Book  Google Scholar 

  48. Rokni M. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine. Energy. 2014;76:19–31. https://doi.org/10.1016/j.energy.2014.01.106.

    Article  CAS  Google Scholar 

  49. Sánchez D, Chacartegui R, Torres M, Sánchez T. Stirling based fuel cell hybrid systems: an alternative for molten carbonate fuel cells. J Power Sources. 2009;192:84–93. https://doi.org/10.1016/j.jpowsour.2008.12.061.

    Article  CAS  Google Scholar 

  50. Assar M, Blumberg T, Morosuk T, Tsatsaronis G. Comparative exergoeconomic evaluation of two modern combined-cycle power plants. Energy Convers Manag. 2016;153:616–26. https://doi.org/10.1016/j.enconman.2017.10.036.

    Article  Google Scholar 

  51. Habibollahzade A, Houshfar E, Ashjaee M, Gholamian E, Behzadi A. Enhanced performance and reduced payback period of a low grade geothermal-based ORC through employing two TEGs. Energy Equip. Syst. 2019;7:23–39. https://doi.org/10.22059/EES.2019.34611.

    Article  Google Scholar 

  52. Landau L, Moran MJ, Shapiro HN, Boettner DD, Bailey M. Fundamentals of engineering thermodynamics. Hoboken: Wiley; 2010.

    Google Scholar 

  53. Gholamian E, Hanafizadeh P, Ahmadi P. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl. Therm. Eng. 2018;137:689–99. https://doi.org/10.1016/j.applthermaleng.2018.03.055.

    Article  CAS  Google Scholar 

  54. Ahmadi P, Dincer I, Rosen MA. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy. 2011;36:5886–98. https://doi.org/10.1016/J.ENERGY.2011.08.034.

    Article  Google Scholar 

  55. S. Mohammad, S. Mahmoudi, E. Gholamian, V. Zare, Exergy analysis of a new configuration of trigeneration system based on biomass Gasifier, (n.d.). https://www.researchgate.net/profile/Ehsan_Gholamian/publication/311270911_EXERGY_ANALYSIS_OF_A_NEW_CONFIGURATION_OF_TRIGENERATION_SYSTEM_BASED_ON_BIOMASS_GASIFIER/links/58405cd108ae2d21755f3299.pdf (accessed June 27, 2017).

  56. Behzadi A, Arabkoohsar A, Gholamian E. Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents. Energy. 2020;201:117640. https://doi.org/10.1016/J.ENERGY.2020.117640.

    Article  CAS  Google Scholar 

  57. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press; 1975.

    Google Scholar 

  58. Tao G, Armstrong T, Virkar A, Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI. In: Ninet. Annu. ACERC&ICES Conf. Utah, 2005.

  59. Hosseinpour J, Sadeghi M, Chitsaz A, Ranjbar F, Rosen MA. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a stirling engine. Energy Convers Manag. 2017;143:448–58. https://doi.org/10.1016/J.ENCONMAN.2017.04.021.

    Article  Google Scholar 

  60. Gomri R, Hakimi R. Second law analysis of double effect vapour absorption cooler system. Energy Convers Manag. 2008;49:3343–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the center of excellence in design and optimization of university of Tehran.

Funding

No funding is received.

Author information

Authors and Affiliations

Authors

Contributions

EG involved in methodology, simulation, writing original draft. PH took part in supervision, methodology, conceptualization. PA participated in supervision, validation, proofreading. LM took part in supervision, developing system schematic idea

Corresponding authors

Correspondence to Pedram Hanafizadeh or Pouria Ahmadi.

Ethics declarations

Ethics approval

The authors agree on ethics on publishing the article.

Informed consent

The authors declare their consent for publication of this article.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholamian, E., Hanafizadeh, P., Ahmadi, P. et al. 4E analysis and three-objective optimization for selection of the best prime mover in smart energy systems for residential applications: a comparison of four different scenarios. J Therm Anal Calorim 145, 887–907 (2021). https://doi.org/10.1007/s10973-020-10177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10177-0

Keywords

Navigation