Skip to main content
Log in

Experimental investigation of heat transfer and exergy loss in heat exchanger with air bubble injection technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main aim of this study is to evaluate thermal performance and exergy analysis of a shell-and-tube heat exchanger with a new technique called air bubble injection. The study has been carried out with different parameters such as flow rate, fluid inlet temperature, and different air injection techniques. The air has been injected at different locations such as the inlet of pipe, throughout the pipe, and in the outer pipe of the heat exchanger. Based on the results, the performance of the heat exchanger enhances with an increase in the flow rate and the fluid inlet temperature. The exergy loss and dimensionless exergy loss increase with a rise in the flow rate. The maximum and dimensionless exergy losses are obtained at a maximum flow rate of 3.5 l min−1. With the air bubble injection in the heat exchanger, it has been observed that the temperature difference increases, which leads to an increase in the exergy loss. The injecting air bubbles throughout the tube section shows that minimum dimensionless exergy is 27.49% concerning no air injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Tube area, (m2)

Cp:

Specific heat, (J kg−1)

H :

Heat transfer coefficient (W m−2 K−1)

m :

Mass flow rate, (kg s−1)

Q :

Heat transfer rate, (W)

T :

Temperature, (°C)

U :

Overall heat transfer coefficient, (W m−2 K−1)

Avg:

Average

c:

Cold fluid

h:

Hot fluid

i:

Inlet

m:

Mean

o:

Outlet

w:

Wall

References

  1. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf. 2019;104:33–40.

    Article  CAS  Google Scholar 

  2. Ahmadi MH, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, et al. Prediction of the pressure drop for CuO/(ethylene glycol–water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm. Phys A Stat Mech its Appl. 2020;124008.

  3. Aghayari R, Maddah H, Pourkiaei SM, Ahmadi MH, Chen L, Ghazvini M. Theoretical and experimental studies of heat transfer in a double-pipe heat exchanger equipped with twisted tape and nanofluid. Eur Phys J Plus. 2020. https://doi.org/10.1140/epjp/s13360-020-00252-8.

    Article  Google Scholar 

  4. Ahmadlouydarab M, Ebadolahzadeh M, Muhammad H. Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency. Physica A. 2020;540:123109. https://doi.org/10.1016/j.physa.2019.123109.

    Article  CAS  Google Scholar 

  5. Muneeshwaran M, Sajjad U, Ahmed T, Amer M, Wang C. Performance improvement of photovoltaic modules via temperature homogeneity improvement. 2020;203.

  6. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review. Sol Energy. 2020;197:163–98. https://doi.org/10.1016/j.solener.2019.11.075.

    Article  Google Scholar 

  7. Tariq SL, Ali HM, Akram MA, Mansoor M, Ahmadlouydarab M. Nanoparticles enhanced phase change materials (NePCMs) -A recent review. Appl Therm Eng. 2020;176:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305.

    Article  Google Scholar 

  8. Abbas F, Raza T, Babar H, Mansoor M, Sajjad U, Amer M. Nano fluid : potential evaluation in automotive radiator. 2020;297.

  9. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Phys A Stat Mech Appl; 2020;124127.

  10. Ahmadi MH, Baghban A, Ghazvini M, Hadipoor M, Ghasempour R, Nazemzadegan MR. An insight into the prediction of TiO2/water nanofluid viscosity through intelligence schemes. J Therm Anal Calorim. 2019;139:2381–94.

    Article  Google Scholar 

  11. Ahmadi MH, Tatar A, Seifaddini P, Ghazvini M, Ghasempour R, Sheremet MA. Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches. Numer Heat Transf A Appl. 2018;74:1301–22.

    Article  CAS  Google Scholar 

  12. Ahmadi MH, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, et al. Prediction of the pressure drop for CuO/(Ethylene glycol–water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm. Phys A Stat Mech Appl. 2020;546:124008.

    Article  CAS  Google Scholar 

  13. Ahmadi MH, Baghban A, Sadeghzadeh M, Hadipoor M, Ghazvini M. Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid. Phys A Stat Mech Appl. 2019

  14. Abbasian Arani AA, Amani J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid. Exp Therm Fluid Sci. 2013;44:520–33.

    Article  CAS  Google Scholar 

  15. Heyhat MM, Kowsary F, Rashidi AM, Alem Varzane Esfehani S, Amrollahi A. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. Int Commun Heat Mass Transf. 2012;39:1272–8.

    Article  CAS  Google Scholar 

  16. Singh G, Gangacharyulu D, Bulasara VK. Experimental investigation of the effect of heat transfer and pressure drop on performance of a flat tube by using water-based Al < inf > 2</inf > O<inf > 3</inf > nanofluids. Int J Energy Clean Environ. 2018;19:1–17.

    Article  Google Scholar 

  17. Sokhal GS, Gangacharyulu D, Bulasara VK. Heat transfer and pressure drop performance of alumina–water nanofluid in a flat vertical tube of a radiator. Chem Eng Commun. 2018;205:257–68.

    Article  CAS  Google Scholar 

  18. Arabia S. In tube convection heat transfer enhancement : SiO2 aqua based nano fluids. 2020;308.

  19. Lu J, Fernández A, Tryggvason G. The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids. 2005;17:1–12.

    Google Scholar 

  20. Mattson M, Mahesh K. Simulation of bubble migration in a turbulent boundary layer. Phys Fluids. 2011;23:1–13.

    Article  Google Scholar 

  21. Jacob B, Olivieri A, Miozzi M, Campana EF, Piva R. Drag reduction by microbubbles in a turbulent boundary layer. Phys Fluids. 2010;22.

  22. Mahdi Heyhat M, Abdi A, Jafarzad A. Performance evaluation and exergy analysis of a double pipe heat exchanger under air bubble injection. Appl Therm Eng. 2018;143:582–93.

    Article  Google Scholar 

  23. Pourhedayat S, Sadighi Dizaji H, Jafarmadar S. Thermal-exergetic behavior of a vertical double-tube heat exchanger with bubble injection. Exp Heat Transf. 2019;32:455–68.

    Article  CAS  Google Scholar 

  24. Sadighi Dizaji H, Jafarmadar S, Abbasalizadeh M, Khorasani S. Experiments on air bubbles injection into a vertical shell and coiled tube heat exchanger; exergy and NTU analysis. Energy Convers Manag. 2015;103:973–80.

    Article  Google Scholar 

  25. Winkel ES, Ceccio SL, Dowling DR, Perlin M. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions. Exp Fluids. 2004;37:802–10.

    Article  CAS  Google Scholar 

  26. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402.

    Article  CAS  Google Scholar 

  27. Khorasani S, Dadvand A. Effect of air bubble injection on the performance of a horizontal helical shell and coiled tube heat exchanger: an experimental study. Appl Therm Eng. 2017;111:676–83.

    Article  CAS  Google Scholar 

  28. Ahmadi AA, Arabbeiki M, Ali HM, Goodarzi M. Configuration and optimization of a minichannel using water – alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. 2020;1–22.

  29. Akpinar EK, Bicer Y. Investigation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with swirl generators. Int J Therm Sci. 2005;44:598–607.

    Article  Google Scholar 

  30. Nandan A, Singh G. Experimental studies on heat transfer performance of shell and tube heat exchanger with air bubble injection. Indian J Sci Technol. 2016;9.

  31. Nandan A, Singh G. Experimental study of heat transfer rate in a shell and tube heat exchanger with air bubble injection. Int J Eng Trans B Appl. 2016;29:1160–6.

    Google Scholar 

  32. Thakur G, Singh G, Thakur M, Kajla S. An experimental study of nanofluids operated shell and tube heat exchanger with air bubble injection. Int J Eng Trans A Basics. 2018;31:136–43.

    Google Scholar 

  33. Thakur G, Singh G. An experimental investigation of heat transfer characteristics of water based Al2O3 nanofluid operated shell and tube heat exchanger with air bubble injection technique. Int J Eng Technol. 2017;6:83–90.

    Article  CAS  Google Scholar 

  34. Tariq HA, Anwar M, Malik A, Ali HM. Hydro-thermal performance of normal-channel facile heat sink using TiO2–H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09838-x.

    Article  Google Scholar 

  35. Khalid SU, Babar H, Ali HM, Janjua MM, Ali MA. Heat pipes: progress in thermal performance enhancement for microelectronics. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09820-7.

    Article  Google Scholar 

  36. Sriharan G, Harikrishnan S, Ali HM. Experimental investigation on the effectiveness of MHTHS using different metal oxide-based nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09779-5.

    Article  Google Scholar 

  37. Xia SJ, Chen LG, Sun FR. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull. 2009;54:3587–95.

    Google Scholar 

  38. Wei S, Chen L, Sun F. Constructal entransy dissipation minimization of round tube heat exchanger cross-section. Int J Therm Sci. 2011;50:1285–92. https://doi.org/10.1016/j.ijthermalsci.2011.02.025.

    Article  Google Scholar 

  39. Feng HJ, Chen LG, Xie ZH, Sun FR. Constructal optimization for H-shaped multi-scale heat exchanger based on entransy theory. Sci China Technol Sci. 2013;56:299–307.

    Article  CAS  Google Scholar 

  40. Chen L, Feng H, Xie Z, Sun F. Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory. Appl Therm Eng. 2015;91:456–62. https://doi.org/10.1016/j.applthermaleng.2015.08.029.

    Article  Google Scholar 

  41. Feng H, Chen L, Xia S. Constructal design for disc-shaped heat exchanger with maximum thermal efficiency. Int J Heat Mass Transf. 2019;130:740–6. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.003.

    Article  Google Scholar 

  42. Feng H, Chen L, Wu Z, Xie Z. Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. Int J Heat Mass Transf. 2019;131:750–6. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.105.

    Article  CAS  Google Scholar 

  43. Feng H, Xie Z, Chen L, Wu Z, Xia S. Constructal design for supercharged boiler superheater. Energy. 2020;191:116484. https://doi.org/10.1016/j.energy.2019.116484.

    Article  Google Scholar 

  44. Nasirzadehroshenin F, Sadeghzadeh M, Khadang A, Maddah H, Ahmadi MH, Sakhaeinia H, et al. Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. Eur Phys J Plus. 2020. https://doi.org/10.1140/epjp/s13360-020-00208-y.

    Article  Google Scholar 

  45. Shahsavar A, Ali HM, Mahani RB, Talebizadehsardari P. Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09864-9.

    Article  Google Scholar 

  46. Ramezanizadeh M, Nazari MA, Hossein M. Mechanics experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. 2019;2060. https://doi.org/10.1080/19942060.2018.1518272.

  47. Xie Z, Feng H, Chen L, Wu Z. Constructal design for supercharged boiler evaporator. Int J Heat Mass Transf. 2019;138:571–9.

    Article  Google Scholar 

  48. Wu Z, Feng H, Chen L, Xie Z, Cai C. Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory. Energy. 2019;181:974–84. https://doi.org/10.1016/j.energy.2019.05.216.

    Article  Google Scholar 

  49. Ramezanizadeh M, Nazari MA. Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network. 2019;468–74.

  50. Komeilibirjandi A, Hossein A, Akbar R. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08838-w.

    Article  Google Scholar 

  51. Maleki A, Elahi M, El M, Assad H, Alhuyi M, Mostafa N, et al. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09373-9.

    Article  Google Scholar 

  52. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12:3–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahyar Ghazvini or Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokhal, G.S., Dhindsa, G.S., Sokhal, K.S. et al. Experimental investigation of heat transfer and exergy loss in heat exchanger with air bubble injection technique. J Therm Anal Calorim 145, 727–737 (2021). https://doi.org/10.1007/s10973-020-10192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10192-1

Keywords

Navigation