Skip to main content
Log in

Energy and exergy analyses of nanofluid-filled parabolic trough solar collector with acentric absorber tube and insulator roof

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Increasing the energy demands has encouraged the development of novel archetypes solar receiver employed in sustainable energies. Parabolic trough solar collectors (PTSCs) attract researchers due to high thermo-hydraulic performance. The main goal of the present investigation is to design an efficient PTSC filled with nanofluid numerically using the finite volume method. The other aim is to compare the obtained numerical results of nanofluid simulation in PTSC the using single-phase mixture model (SPM) and the two-phase mixture model (TPM). In the first step, influences of using SPM or TPM on nanofluid simulation in absorber tube are investigated. Then, the influences of using an insulator roof and an acentric absorber tube on energy and exergy efficiency are studied. Consequently, in this step the optimum configuration is introduced. In the last step, effect of different nanofluid parameters (different volume fraction and various nanoparticles diameters) on the optimum configuration is investigated using TPM. Based on obtained results, for both conventional and novel PTSC, the obtained Nusselt number employing TPM simulation is more than that of SPM simulation. Also, it is found that using the novel PTSC leads to higher Nusselt number, energy efficiency, performance evaluation criteria, and outlet temperature for all studied Reynolds numbers. According to the results, the energy and exergy efficiencies of novel PTSC with an insulator arc angle of 70° and acentric value of 20 mm filled with nanofluid having a diameter of 20 mm and nanoparticles volume fraction of 1% are about 73.10 and 31.55% and are the maximum obtained efficiencies in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\( A_{\text{a}} \) :

Absorber tube surface

\( {\mathcal{A}}_{\text{PTSC}} \) :

Aperture of PTSC

a :

Radiation constant (\( a = 7. 5 6 1\times 10^{ - 19} {\text{kJ}}\;{\text{m}}^{ - 3} {\text{K}}^{ - 4} \))

a i :

Coefficients in thermal properties of Syltherm 800 oil estimations

b :

Exergy transfer

b q :

Exergy of the heat receiver

\( C_{\mu } \) :

Standard constant in the turbulent model

\( c_{\text{p}} \) :

Constant specific heat capacity

\( c_{1} \) :

Standard constant in the turbulent model

\( c_{2} \) :

Standard constant in the turbulent model

C.PTSC:

Conventional PTSC

c :

Speed of light in vacuum (2.998 × 108 m s−1)

\( D \) :

Coefficient of Einstein diffusion

\( d_{\text{a}} \) :

Absorber tube outer diameter

\( d_{\text{g}} \) :

Glass cover outer diameter

\( d_{\text{np}} \) :

Nanoparticle mean diameter

\( \dot{E}_{\text{dest}} \) :

Destruction exergy

\( \dot{E}_{{{\text{dest}},\Delta {\text{p}}}} \) :

Destruction exergy due to the pressure gradient

\( \dot{E}_{\text{dest, heat}} \) :

Destruction exergy due to heat transfer

\( \dot{E}_{\text{loss}} \) :

Exergy loss

\( \dot{E}_{\text{loss, heat}} \) :

Exergy loss due to heat transfer

\( \dot{E}_{{{\text{loss}},\Delta {\text{p}}}} \) :

Exergy loss due to pressure gradient

\( \dot{E}_{\text{loss,opt}} \) :

Exergy loss due to optical error

\( \dot{E}_{\text{solar, in}} \) :

Inlet solar exergy

\( \dot{E}_{\text{loss,opt}} \) :

Optical error exergy

\( \dot{E}_{\text{loss, heat}} \) :

Heat transfer loss exergy

e :

Emission energy

\( f_{\text{av}} \) :

Friction factor for enhanced PTSC

\( f_{{{\text{av}},0}} \) :

Friction factor for the reference PTSC

\( G \) :

The production rate of \( k \)

\( \vec{g} \) :

Fluid gravitational acceleration

GM:

Gray model

HTF:

Heat transfer fluid

\( h_{\text{a}} \) :

Convective heat transfer of air-filled annular space

\( h_{\text{g}} \) :

Convective heat transfer of surrounding air with outer glass tube

\( h_{\text{bf}} \) :

Base fluid enthalpy

\( h_{\text{s}} \) :

Solid particles enthalpy

\( I_{\text{b}} \) :

Direct normal irradiance is

\( k_{\text{np}} \) :

Nanoparticle thermal conductivity

\( k_{\text{bf}} \) :

Base fluid thermal conductivity (W mK−1)

\( k \) :

Thermal conductivity

\( k_{\text{b}} \) :

Boltzmann’s constant

\( L_{\text{PTSC}} \) :

Length of PTSC

M :

Molecular mass

N :

Avogadro number

\( {\text{Nu}}_{\text{av}} \) :

Averaged Nusselt number of enhanced PTSC

\( {\text{Nu}}_{{{\text{av}},0}} \) :

Averaged Nusselt number of reference PTSC

NPTSC:

Nanofluid-based parabolic trough solar collectors

N.PTSC:

Novel PTSC

p :

Pressure

\( { \Pr } \) :

Base fluid Prandtl number

\( { \Pr }_{\text{W}} \) :

Wall temperature Prandtl number

PEC:

Performance Evaluation Criterion

PTSC:

Parabolic trough solar collector

\( \dot{Q}_{\text{rad,r} - \text{a}} \) :

Transmitted solar irradiance across glass cover by radiation

\( \dot{Q}_{\text{conv,a} - \text{nf}} \) :

Heat exchange among heat transfer nanofluid and absorber tube by convection

\( \dot{Q}_{\text{conv,a} - \text{anna}} \) :

Heat exchange among absorber tube and annulus-air (anna) by convection

\( \dot{Q}_{\text{rad,g} - \text{sky}} \) :

Radiation heat loses with the lower part of the glass cover

\( \dot{Q}_{\text{rad,a} - \text{sky}} \) :

Radiation heat loses with the lower part of the absorber tube

\( \dot{Q}_{\text{cond,a} - \text{ins}} \) :

Heat exchange among absorber tube and insulation part by conduction

\( \dot{Q}_{\text{cond,a} - \text{nf}} \) :

Heat exchange among absorber tube and nanofluid

\( \dot{Q}_{\text{conv,g} - \text{env}} \) :

Heat exchange among glass cover and surrounding by convention

\( \dot{Q}_{\text{j, loss}} \) :

Heat loss

\( {\text{Re}}_{\text{np}} \) :

Nanoparticle Reynolds number

\( {\text{Re}}_{\text{s}} \) :

Particle Reynolds number

S2S:

Surface-to-surface transfer mode

SPM:

Single-phase model

T :

Nanofluid temperature

\( T_{\text{a}} \) :

The temperature of air-filled annular space

\( T_{\text{g}} \) :

Surrounding air temperature

\( T_{\text{a,j}} \) :

Absorber tube temperature

\( T_{\text{i,j}} \) :

Inlet absorber tube fluid temperature

\( T_{\text{e,j}} \) :

Exit absorber tube fluid temperature

\( T_{\text{env}} \) :

Ambient (environment) temperature

\( T_{\text{in}} \) :

Inlet nanofluid temperature

\( T_{\text{fr}} \) :

Base fluid freezing point

\( T_{0} \) :

Surrounding temperature

\( T_{\text{s}} \) :

Surface temperature

TPM:

Two-phase model

\( u_{\text{B}} \) :

Nanoparticle mean Brownian velocity

\( \vec{U}_{\text{m}} \) :

Mixture velocity or mass-averaged velocity

\( \vec{U}_{\text{s}} \) :

Solid particles velocity

\( \vec{U}_{\text{bf}} \) :

The velocity of the base fluid

\( \vec{U}_{\text{dr,bf}} \) :

Base fluid drift velocity

\( \vec{U}_{\text{dr,s}} \) :

Particles drift velocity

\( V_{\text{w}} \) :

Wind velocity

\( V_{\text{nf}} \) :

Nanofluid velocity

\( \vec{\alpha } \) :

Particle’s gravitational acceleration

α :

Absorptance

\( \delta \) :

Half of the sun’s cone angle

\( \delta_{\text{a}} \) :

Absorber tube thickness

\( \delta b \) :

Irreversibility of exergy

ε :

Emittance

\( \varepsilon_{\text{ex}} \) :

Exergy efficiency

\( \Lambda \) :

Acentric values

\( \mu \) :

Dynamic viscosity

\( \mu_{\text{t,m}} \) :

Turbulent viscosity

\( \mu_{\text{m}} \) :

Mixture viscosity

\( \mu_{\text{eff}} \) :

Nanofluid viscosity

\( \sigma_{\text{k}} \) :

Standard constants in the turbulent model

\( \sigma_{\varepsilon } \) :

Standard constants in the turbulent model

\( \sigma_{\text{t}} \) :

Standard constants in the turbulent model

\( \rho_{\text{m}} \) :

Density for a two-phase mixture

ρ :

Density

τ :

Transmittance

\( \rho_{{{\text{f}}0}} \) :

Base fluid density was evaluated at temperature \( T_{0} = 293\;{\text{K}} \)

\( \tau_{\text{D}} \) :

Time request to the distance between two molecules

\( \varrho \) :

Refractive index

\( \phi \) :

Volume fraction

\( \varsigma_{\text{Rim}} \) :

Rim angle

\( \varsigma_{\text{NP}} \) :

Non-parallelism angle

\( \psi \) :

Highest available solar work

Ψ:

Arc angle

References

  1. Salgado Conrado L, Rodriguez-Pulido A, Calderon G. Thermal performance of parabolic trough solar collectors. Renew Sustain Energy Rev. 2017;67:1345–59.

    Google Scholar 

  2. Mokhtari Shahdost B, Jokar MA, Astaraei FR, Ahmadi MH. Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery). J Therm Anal Calorim. 2019;137:2081–97.

    CAS  Google Scholar 

  3. Guo S, Liu D, Chu Y, Chen X, Xu C, Liu Q. Dynamic behavior and transfer function of collector field in once-through DSG solar trough power plants. Energy. 2017;121:513–23.

    Google Scholar 

  4. Balijepalli R, Chandramohan VP, Kirankumar K, Suresh S. Numerical analysis on flow and performance characteristics of a small-scale solar updraft tower (SUT) with horizontal absorber plate and collector glass. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10057-7.

    Article  Google Scholar 

  5. Daniel P, Joshi Y, Das AK. Numerical investigation of parabolic trough receiver performance with outer vacuum shell. Sol Energy. 2011;85:1910–4.

    CAS  Google Scholar 

  6. Hong K, Yang Y, Rashidi S, Guan Y, Xiong Q. Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09386-4.

    Article  Google Scholar 

  7. Hemmat Esfe M, Abbasian Arani AA, Esfandeh S, Afrand M. Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: preventing cold start engine damages and saving energy. Energy. 2019;170:228–38.

    CAS  Google Scholar 

  8. Hemmat Esfe M, Abbasian Arani AA, Esfandeh S. Experimental study on rheological behavior of monograde heavy-duty engine oil containing CNTs and oxide nanoparticles with focus on viscosity analysis. J Mol Liq. 2018;272:319–29.

    CAS  Google Scholar 

  9. Hemmat Esfe M, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT-Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128(3):1359–71.

    Google Scholar 

  10. Hemmat Esfe M, Esfandeh S, Abbasian Arani AA. Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 2019;355:251–63.

    CAS  Google Scholar 

  11. Hemmat Esfe M, Abbasian Arani AA, Rezaee M, Dehghani Yazdeli R, Wongwises S. An inspection of viscosity models for numerical simulation of natural convection of Al2O3–water nanofluid with variable properties. Curr Nanosci. 2017;13(5):449–61.

    Google Scholar 

  12. Hemmat Esfe M, Karimpour R, Abbasian Arani AA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102.

    CAS  Google Scholar 

  13. Abbasian Arani AA, Amani J, Hemmat Esfeh M. Numerical simulation of mixed convection flows in a square double lid-driven cavity partially heated using nanofluid. J Nanostruct. 2012;2(3):301–11.

    Google Scholar 

  14. Hemmat Esfe M, Abbasian Arani AA, Yan MM, Aghaei A. Natural convection in T-shaped cavities filled with water-based suspensions of COOH-functionalized multi walled carbon nanotubes. Int J Mech Sci. 2017;121:21–32.

    Google Scholar 

  15. Abbasian Arani AA, Aberoumand H, Aberoumand S, Jafari Moghaddam A, Dastanian M. An empirical investigation on thermal characteristics and pressure drop of Ag–oil nanofluid in concentric annular tube. Heat Mass Transf. 2016;52(8):1693–706.

    CAS  Google Scholar 

  16. Hemmat Esfe M, Abbasian Arani AA, Aghaie A, Wongwises S. Mixed convection flow and heat transfer in an up-driven, inclined, square enclosure subjected to DWCNT-water nanofluid containing three circular heat sources. Curr Nanosci. 2017;13(3):311–23.

    Google Scholar 

  17. Abbasian Arani AA, Kakoli Hajialigol N. Double-diffusive natural convection of Al2O3–water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol. 2014;28(11):4681–91.

    Google Scholar 

  18. Abbasian Arani AA, Mahmoodi M, Sebdani SM. On the cooling process of nanofluid in a square enclosure with linear temperature distribution on left wall. J Appl Fluid Mech. 2014;7(4):591–601.

    Google Scholar 

  19. Kaloudis E, Papanicolaou E, Belessiotis V. Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew Energy. 2016;97:218–29.

    CAS  Google Scholar 

  20. Benabderrahmane A, Benazza A, Laouedj S, Solano JP. Numerical analysis of compound heat transfer enhancement by single and two-phase models in parabolic through solar receiver. Mechanika. 2017;23(1):55–61.

    Google Scholar 

  21. Heng SH, Asako Y, Suwa T, Nagasaka K. Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network. Renew Energy. 2019;131:168–79.

    Google Scholar 

  22. Osorio JD, Rivera-Alvarez A. Performance analysis of parabolic trough collectors with double glass envelope. Renew Energy. 2019;130:1092–107.

    Google Scholar 

  23. Li X, Xu E, Ma L, Song S, Xu L. Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant. Renew Energy. 2019;132:998–1017.

    Google Scholar 

  24. Arabhosseini A, Samimi-Akhijahani H, Motehayyer M. Increasing the energy and exergy efficiencies of a collector using porous and recycling system. Renew Energy. 2019;132:308–25.

    Google Scholar 

  25. Khouya A, Draoui A. Computational drying model for solar kiln with latent heat energy storage: case studies of thermal application. Renew Energy. 2019;130:796–813.

    Google Scholar 

  26. Khosravi A, Malekan M, Assad MEH. Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renew Energy. 2019;134:54–63.

    CAS  Google Scholar 

  27. Al-Oran O, Lezsovits F, Aljawabrah A. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. J Therm Anal Calorim. 2020;140:1579–96.

    CAS  Google Scholar 

  28. Osorio JD, Rivera-Alvarez A, Ordonez JC. Effect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials. Sustain Energy Technol Assess. 2019;32:58–70.

    Google Scholar 

  29. Jovanović U, Mančić D, Jovanović I, Petrušić Z. Temperature measurement of photovoltaic modules using non-contact infrared system. J Electr Eng Technol. 2017;12(2):904–10.

    Google Scholar 

  30. Wirz M, Petit J, Haselbacher A, Steinfeld A. Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators. Sol Energy. 2014;107:398–414.

    Google Scholar 

  31. Senturk Acar M, Arslan O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered organic Rankine cycle. J Therm Anal Calorim. 2019;137:659–66.

    CAS  Google Scholar 

  32. Akbari Vakilabadi M, Bidi M, Najafi AF, Ahmadi MH. Energy, exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant zero liquid discharge systems. J Therm Anal Calorim. 2020;139:1275–90.

    CAS  Google Scholar 

  33. Liu P, Zheng N, Liu Z, Liu W. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Convers Manag. 2019;179:30–45.

    Google Scholar 

  34. Sadeghi G, Safarzadeh H, Ameri M. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid. Energy Sustain Dev. 2019;48:88–106.

    Google Scholar 

  35. Wang Q, Yang H, Huang X, Li J, Pei G. Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers. Appl Therm Eng. 2018;132:381–92.

    Google Scholar 

  36. Yang H, Wang Q, Huang X, Li J, Pei G. Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers. Energy. 2018;145:206–16.

    Google Scholar 

  37. Al-Ansary H, Zeitoun O. Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol Energy. 2011;85(11):3036–45.

    Google Scholar 

  38. Hanafizadeh P, Ashjaee M, Goharkhah M, Montazeri K, Akrama M. The comparative study of single and two-phase models for magnetite nanofluid forced convection in a tube. Int Commun Heat Mass Transf. 2015;65:58–70.

    CAS  Google Scholar 

  39. Rostami J, Abbassi A. Conjugate heat transfer in a wavy microchannel using nanofluid 5 by two-phase Eulerian–Lagrangian method. Adv Powder Technol. 2016;27(1):9–18.

    CAS  Google Scholar 

  40. Bizhaem HK, Abbassi A. Numerical study on heat transfer and entropy generation of developing 5 laminar nanofluid flow in helical tube using two-phase mixture model. Adv Powder Technol. 2017;28(9):2110–25.

    CAS  Google Scholar 

  41. Amani M, Amani P, Kasaeian A, Mahian O, Yan WM. Two-phase mixture model for nanofluid turbulent flow and heat transfer: effect of heterogeneous distribution of nanoparticles. Chem Eng Sci. 2017;167:135–44.

    CAS  Google Scholar 

  42. Kumar V, Sarkar J. Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. Int Commun Heat Mass Transf. 2018;91:239–47.

    CAS  Google Scholar 

  43. Bizhaem HK, Abbassi A. Effects of curvature ratio on forced convection and entropy generation of nanofluid in helical coil using two-phase approach. Adv Powder Technol. 2018;29(4):890–903.

    Google Scholar 

  44. Sheikholeslami M, Rokni HB. Influence of melting surface on MHD nanofluid flow by means of two phase model. Chin J Phys. 2018;55(4):1352–600.

    Google Scholar 

  45. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    CAS  Google Scholar 

  46. Alsarraf J, Moradikazerouni A, Shahsavar A, Afrand M, Salehipour H, Tran MD. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys A. 2019;520:275–88.

    CAS  Google Scholar 

  47. Mohammed HA, Abuobeidab IAMA, Vuthaluru HB, Liua S. Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts. Int Commun Heat Mass Transf. 2019;101:10–20.

    CAS  Google Scholar 

  48. Borah A, Boruah MP, Pati S. Conjugate heat transfer in a duct using nanofluid by two-phase Eulerian–Lagrangian method: effect of non-uniform heating. Powder Technol. 2019;346:180–92.

    CAS  Google Scholar 

  49. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77(3):662–92.

    Google Scholar 

  50. Thirunavukkarasu V, Cheralathan M. An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator. Energy. 2020;192:116635.

    Google Scholar 

  51. Ebrahimi A, Ghorbani B, Lohrasbi H, Ziabasharhagh M. Novel integrated structure using solar parabolic dish collectors for liquid nitrogen production on offshore gas platforms (exergy and economic analysis). Sustain Energy Technol Assess. 2020;37:100606.

    Google Scholar 

  52. Valizadeh M, Sarhaddi F, Adeli MM. Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector. Renew Energy. 2019;138:1028–41.

    Google Scholar 

  53. Hassan H. Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity. Renew Energy. 2019;148:437–50.

    Google Scholar 

  54. Ehyaei MA, Ahmadi A, El Haj Assad M, Hachicha AA, Said Z. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Sol Energy. 2019;187:175–84.

    CAS  Google Scholar 

  55. Onokwai AO, Okonkwo UC, Osueke CO, Okafor CE, Olayanju TMA, Dahunsi SO. Design, modelling, energy and exergy analysis of a parabolic cooker. Renew Energy. 2019;142:497–510.

    Google Scholar 

  56. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  57. Khan MS, Yan M, Ali HM, Amber KP, Bashir MA, Akbar B, Javed S. Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09590-2.

    Article  Google Scholar 

  58. Bellos Evangelos, Tzivanidis Christos. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135:597–608.

    CAS  Google Scholar 

  59. Mahmoodi M, Akbar Abbasian AA, Sebdani Mazrouei S, Nazari S, Akbari M. Free convection of a nanofluid in a square cavity with a heat source on the bottom wall and partially cooled from sides. Therm Sci. 2014;18(suppl. 2):283–300.

    Google Scholar 

  60. Pourfattah F, Abbasian Arani AA, Babaie MR, Nguyen HM, Asadi A. On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation. Int J Heat Mass Transf. 2019;143:118518.

    CAS  Google Scholar 

  61. Abbasian Arani AA, Moradi R. Shell and tube heat exchanger optimization using new baffle and tube configuration. Appl Therm Eng. 2019;157:113736.

    Google Scholar 

  62. Abbasian Arani AA, Ababaei A, Sheikhzadeh GA, Aghaei A. Numerical simulation of double-diffusive mixed convection in an enclosure filled with nanofluid using Bejan’s heatlines and masslines. Alex Eng J. 2018;57(3):1287–300.

    Google Scholar 

  63. Hemmat Esfe M, Abbasian Arani AA, Yan WM, Aghaei A. Numerical study of mixed convection inside a Γ-shaped cavity with Mg (OH2)-EG nanofluids. Curr Nanosci. 2017;13(4):354–63.

    Google Scholar 

  64. Ehteram HR, Abbasian Arani AA, Sheikhzadeh GA, Aghaei A, Malihi AR. The effect of various conductivity and viscosity models considering Brownian motion on nanofluid mixed convection flow and heat transfer. Transp Phenom Nano Micro Scales. 2016;4(1):19–28.

    Google Scholar 

  65. Kalbasi R, Shahsavar A, Afrand M. Incorporating novel heat recovery units into an AHU for energy demand reduction-exergy analysis. J Therm Anal Calorim. 2020;139:2821–30.

    CAS  Google Scholar 

  66. Singh G, Singh PJ, Tyagi VV, Barnwal P, Pandey AK. Exergy and thermoeconomic analysis of cream pasteurisation plant. J Therm Anal Calorim. 2019;137:1381–400.

    CAS  Google Scholar 

  67. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  68. Kumar V, Sarkar J. Effect of different nanoparticle-dispersed nanofluids on hydrothermal-economic performance of minichannel heat sink. J Therm Anal Calorim. 2020;141:1477–88.

    CAS  Google Scholar 

  69. Rekha Sahoo R. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10039-9.

    Article  Google Scholar 

  70. Borgnakke C, Sonntag RE. Fundamentals of thermodynamics. 7th ed. Hoboken: Wiley; 2018.

    Google Scholar 

  71. Abbasian Arani AA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal-wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128–129:550–63.

    Google Scholar 

  72. Sadripour S. 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran. Int J Num Methods Heat Fluid Flow. 2018;29(4):1378–402.

    Google Scholar 

  73. Dudley V, Kolb G, Sloan M, Kearney D. SEGS LS2 Solar Collector Test Results, Report of Sandia National Laboratories. Report. 1994; 94–1884.

  74. Dow Chemical Company, Syltherm 800 Heat Transfer Fluid, Product Technical Data, Dow, 1997.

  75. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    CAS  Google Scholar 

  76. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    CAS  Google Scholar 

  77. Incropera P, Dewitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. Hoboken: Wiley; 2006.

    Google Scholar 

  78. Chandra YP, Singh A, Mohapatra SK, Kesari JP, Rana L. Numerical optimization and convective thermal loss analysis of improved solar parabolic trough collector receiver system with one sided thermal insulation. Sol Energy. 2017;148:36–48.

    Google Scholar 

  79. Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Appl Energy. 2011;88:5097–110.

    Google Scholar 

  80. Schlunder EU. Heat exchanger design handbook, vol. 4. Washington, DC: Hemisphere Publication Corporation; 1983.

    Google Scholar 

  81. Gnielinsli V. Heat transfer coefficients for turbulent flow in concentric annular ducts. Heat Transf Eng. 2009;30(6):431–6.

    Google Scholar 

  82. Dushman S. Scientific foundations of vacuum technique. John Wiley & Sons, 1962.

  83. Kakat S, Shah RK, Aung W. Handbook of single-phase convective heat transfer. New York: Wiley; 1987.

    Google Scholar 

  84. Parrott J. Theoretical upper limit to the conversion efficiency of solar energy. Sol Energy. 1978;21(3):227–9.

    Google Scholar 

  85. Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. In: Student problem set supplement, 5th ed. Wiley, 2004.

  86. Suzuki A. General theory of exergy-balance analysis and application to solar collectors. Energy. 1988;13:153–60.

    Google Scholar 

  87. Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization. Hoboken: Wiley; 1996.

    Google Scholar 

  88. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74:469–88.

    Google Scholar 

  89. ANSYS Inc, Ansys CFX-solver theory guide, 2009.

  90. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28:211–9.

    CAS  Google Scholar 

  91. Hejazian M, Moraveji MK, Beheshti A. Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube. Int Commun Heat Mass Transf. 2014;52:152–8.

    CAS  Google Scholar 

  92. Goktepe S, Atalk K, Ertrk H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int J Therm Sci. 2014;80:83–92.

    Google Scholar 

  93. Schiller L, Naumann A. A drag coefficient correlation. Z Ver Dtsch Ing. 1935;77:318–20.

    Google Scholar 

  94. He YL, Xiao J, Cheng ZD, Tao YB. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy. 2011;36:976–85.

    Google Scholar 

  95. Sokhansefat T, Kasaeian A, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev. 2014;33:636–44.

    CAS  Google Scholar 

  96. Khakrah HR, Shamloo A, Kazemzadeh Hannani S. Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid. Sol Energy. 2018;173:1236–47.

    CAS  Google Scholar 

  97. Wang Q, Hu M, Yang H, Cao J, Li J, Su Y, Pei G. Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system. Energy. 2019;171:611–23.

    CAS  Google Scholar 

  98. Duffie JA, Beckman WA. Solar engineering of thermal processes. 3rd ed. New York: Wiley; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Abbasian Arani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasian Arani, A.A., Monfaredi, F. Energy and exergy analyses of nanofluid-filled parabolic trough solar collector with acentric absorber tube and insulator roof. J Therm Anal Calorim 145, 787–816 (2021). https://doi.org/10.1007/s10973-020-10267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10267-z

Keywords

Navigation