Skip to main content
Log in

Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigation of fluid behavior in a cavity enclosure has been a significant issue from the past in the field of fluid mechanics. In the present study, hydrothermal evaluation of hybrid nanofluid with a water–ethylene glycol (50–50%) as the base fluid which contains MoS2–TiO2 hybrid nanoparticles, in an octagon with an elliptical cavity in the middle of it, has been performed. In this problem, the effects of the radiation parameter, porosity, and the magnetic parameter have been analyzed on temperature distribution and fluid flow streamlines and also, on the local and average Nusselt numbers. The governing equations have been solved by the finite element method (FEM). As a novelty, the Taguchi method has been utilized for test design. Further, the response surface method (RSM) has been applied to achieving the optimum value of the involved parameters. The obtained results illustrate that with an augment in the Rayleigh number from 10 to 100, the average Nusselt number will improve by about 61.82%. Additionally, regarding the correlation, it is indeed transparent that the Rayleigh number has the most colossal contribution comparing other factors on the achieved equation, by about 61.88%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

HNP:

Hybrid nanoparticles

GFEM:

Galerkin finite element method

Nu:

Nusselt number

Ha:

Hartmann number

Ra:

Rayleigh number

Rd:

Radiation parameter

x, y :

Horizontal and vertical space coordinates

T :

Temperature

K :

Permeability

B :

Magnetic field

h nfs :

Interface heat transfer coefficient

ρ :

Density

µ :

Dynamic viscosity

ε :

Porosity of the porous medium

θ :

Dimensionless temperature

\(\Psi\) :

Stream function

β :

Thermal expansion coefficient

σ :

Electrical conductivity

φ :

Nanoparticle volume fraction

δ s :

Modified thermal conductivity ratio

f:

Base fluid

s1 :

First solid nanoparticle

s2 :

Second solid nanoparticle

hnf:

Hybrid nanofluid

loc:

Local

ave:

Average

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.

    Google Scholar 

  2. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;1(103):556–92.

    Article  Google Scholar 

  3. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94.

    Article  CAS  Google Scholar 

  4. Soudagar ME, Kalam MA, Sajid MU, Afzal A, Banapurmath NR, Akram N, Mane SD, Saleel CA. Thermal analyses of minichannels and use of mathematical and numerical models. Numer Heat Transf Part A Appl. 2020;77(5):497–537.

    Article  CAS  Google Scholar 

  5. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–potential of nanofluids. J Mol Liq. 2019;1(289):111049.

    Article  Google Scholar 

  6. Sajid MU, Bicer Y. Nanofluids as solar spectrum splitters: a critical review. Sol Energy. 2020;1(207):974–1001.

    Article  Google Scholar 

  7. Babar H, Sajid MU, Ali HM. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23(3 Part B):1713–54.

    Article  Google Scholar 

  8. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;1(126):211–34.

    Article  Google Scholar 

  9. Haq RU, Soomro FA, Hammouch Z, Rehman SU. Heat exchange within the partially heated C-shape cavity filled with the water based SWCNTs. Int J Heat Mass Transf. 2018;1(127):506–14.

    Article  Google Scholar 

  10. Shulepova EV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection of Al2O3–H2O nanoliquid in a square chamber with complicated fin. Int J Mech Sci. 2020;1(165):105192.

    Article  Google Scholar 

  11. Selimefendigil F, Öztop HF. MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Physica A Stat Mech Appl. 2019;15(534):122144.

    Article  Google Scholar 

  12. Kefayati GR. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method. Int Commun Heat Mass Transf. 2013;1(40):67–77.

    Article  Google Scholar 

  13. Ghaffarpasand O. Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4–water nanofluid in the presence of Joule heating. Appl Math Model. 2016;40(21–22):9165–82.

    Article  Google Scholar 

  14. Haq RU, Soomro FA, Öztop HF, Mekkaoui T. Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. Int J Heat Mass Transf. 2019;1(131):724–36.

    Article  Google Scholar 

  15. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Ganji DD. Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. Int Commun Heat Mass Transf. 2020;1(110):104398.

    Article  Google Scholar 

  16. Rahman MM, Alam MS, Al-Salti N, Eltayeb IA. Hydromagnetic natural convective heat transfer flow in an isosceles triangular cavity filled with nanofluid using two-component nonhomogeneous model. Int J Therm Sci. 2016;1(107):272–88.

    Article  Google Scholar 

  17. Selimefendigil F, Öztop HF. Modeling and optimization of MHD mixed convection in a lid-driven trapezoidal cavity filled with alumina–water nanofluid: effects of electrical conductivity models. Int J Mech Sci. 2018;1(136):264–78.

    Article  Google Scholar 

  18. Ul Haq R, Aman S. Water functionalized CuO nanoparticles filled in a partially heated trapezoidal cavity with inner heated obstacle: FEM approach. Int J Heat Mass Transf. 2019;128:401–17.

    Article  Google Scholar 

  19. Khan ZH, Makinde OD, Hamid M, Haq RU, Khan WA. Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium. J Magn Magn Mater. 2020;1(499):166241.

    Article  Google Scholar 

  20. Hosseinzadeh K, Roghani S, Mogharrebi AR, Asadi A, Waqas M, Ganji DD. Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alex Eng J. 2020;59:3297–307.

    Article  Google Scholar 

  21. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;15(416):37–47.

    Article  Google Scholar 

  22. Garmroodi MD, Ahmadpour A, Talati F. MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study. Int J Mech Sci. 2019;1(150):247–64.

    Article  Google Scholar 

  23. Hashemi H, Namazian Z, Zadeh SM, Mehryan SA. MHD natural convection of a micropolar nanofluid flowing inside a radiative porous medium under LTNE condition with an elliptical heat source. J Mol Liq. 2018;1(271):914–25.

    Article  Google Scholar 

  24. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;1(483):224–48.

    Article  Google Scholar 

  25. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;135(6):3485–97.

    Article  CAS  Google Scholar 

  26. Ali MM, Alim MA, Ahmed SS. Numerical simulation of hydromagnetic natural convection flow in a grooved enclosure filled with CuO–water nanofluid considering Brownian motion. Int J Appl Comput Math. 2018;4(5):125.

    Article  Google Scholar 

  27. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Asghar Z, Waqas M, Ganji DD. A computational framework for natural convective hydromagnetic flow via inclined cavity: an analysis subjected to entropy generation. J Mol Liq. 2019;1(287):110863.

    Article  Google Scholar 

  28. Aly AM, Raizah ZA. Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles. Physica A Stat Mech Appl. 2020;1(537):122623.

    Article  Google Scholar 

  29. Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Abu-Hamdeh N. Natural convection in nanofluid filled and partially heated annulus: effect of different arrangements of heaters. Physica A Stat Mech Appl. 2020;15(538):122479.

    Article  Google Scholar 

  30. Hosseinzadeh K, Asadi A, Mogharrebi AR, Azari ME, Ganji DD. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J Therm Anal Calorim. 2020;25:1–5.

    Google Scholar 

  31. Hosseinzadeh K, Roghani S, Asadi A, Mogharrebi A, Ganji DD. Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. Int J Numer Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-02-2020-0095.

    Article  Google Scholar 

  32. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  33. Taguchi G. Introduction to quality engineering. Tokyo: Asian Productivity Organisation; 1990.

    Google Scholar 

  34. Taguchi G. Introduction to quality engineering: designing quality into products and processes. Technometrics. 1986;31:255–6.

    Google Scholar 

  35. Hosseinzadeh K, Mogharrebi AR, Asadi A, Paikar M, Ganji DD. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. J Mol Liq. 2020;15(300):112347.

    Article  Google Scholar 

  36. Hosseinzadeh K, Moghaddam ME, Asadi A, Mogharrebi AR, Ganji DD. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renew Energy. 2020;154:497–507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kh. Hosseinzadeh or D. D. Ganji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R. et al. Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J Therm Anal Calorim 143, 1413–1424 (2021). https://doi.org/10.1007/s10973-020-10376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10376-9

Keywords

Navigation