Skip to main content
Log in

Thermal and bonding properties of epoxy asphalt bond coats

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Epoxy asphalt bond coat (EABC) is one of the thermosetting polymer-modified asphalts, which has been widely employed as a strong waterproof bonding layer between the asphalt concrete and the orthotropic steel bridge deck. In the present work, the influences of asphalt content on the phase separation, viscosity, thermal stability, viscoelastic behavior, mechanical performance, pull-off strength, and adhesive performance of EABCs were characterized by various instruments. Laser scanning confocal microscopy observations showed that phase separation occurring in EABCs depended on the curing time. The asphalt merged to form large spherical particles in the continuous epoxy phase during the cure reaction. The size of asphalt particles increased in the asphalt content. Viscosities of EABCs were higher than that of the pure epoxy and increased with the asphalt content in the initial curing stage. However, the opposite trend was observed in the latter curing stage. The presence of asphalt slightly improved the glass transition temperature and the damping properties of the pristine epoxy. For EABCs, the damping behaviors slightly increased with the asphalt content. The thermal stability of the pristine epoxy was enhanced by the incorporation of asphalt. The addition of asphalt decreased the mechanical, adhesive properties, and pull-off strength of the pristine epoxy. What’s more, these properties of EABCs decreased in the asphalt content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mangus A. Orthotropic steel decks. In: Chen W-F, Duan L, editors. Bridge engineering handbook: superstructure design. 2nd ed. Boca Raton: CRC Press; 2014. p. 589–646.

    Google Scholar 

  2. Gurney T. Fatigue of steel bridge decks, vol. 8. London: Edinburgh Press; 1992.

    Google Scholar 

  3. Jia X, Huang B, Chen S, Shi D. Comparative investigation into field performance of steel bridge deck asphalt overlay systems. KSCE J Civil Eng. 2016;20(7):2755–64.

    Article  Google Scholar 

  4. Hicks R, Dussek I, Seim C. Asphalt surfaces on steel bridge decks. Transport Res Rec. 2000;1740:135–42.

    Article  Google Scholar 

  5. Medani TO. Design principles of surfacings on orthotropic steel bridge decks (Ph.D. thesis). The Netherlands: Delft University of Technology; 2006.

  6. Bocci E, Canestrari F. Analysis of structural compatibility at interface between asphalt concrete pavements and orthotropic steel deck surfaces. Transport Res Rec. 2012;2293:1–7.

    Article  Google Scholar 

  7. Jia X, Huang B, Bowers B, Rutherford T. Investigation of tack coat failure in orthotropic steel bridge deck overlay. Transport Res Rec. 2014;2444(1):28–37.

    Article  Google Scholar 

  8. Yao B, Li FC, Wang X, Cheng G. Evaluation of the shear characteristics of steel–asphalt interface by a direct shear test method. Int J Adhes Adhes. 2016;68:70–9.

    Article  CAS  Google Scholar 

  9. Xu K, Chen R, Wang C, Sun Y, Zhang J, Liu Y, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2016;126(3):1253–60.

    Article  CAS  Google Scholar 

  10. Motamedi M, Attar MM, Rostami M. Performance enhancement of the oxidized bitumen binder using epoxy resin. Prog Org Coat. 2017;102:178–85.

    Article  CAS  Google Scholar 

  11. Xu K, Li C, Wang C, Jiang Y, Liu Y, Xie H. Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks. J Therm Anal Calorim. 2019;137(4):1189–98.

    Article  CAS  Google Scholar 

  12. Wang J, Xiao F, Chen Z, Li X, Amirkhanian S. Application of tack coat in pavement engineering. Constr Build Mater. 2017;152:856–71.

    Article  Google Scholar 

  13. Liu X, Zhou C, Feng D, Fan X, Xie S. Experimental study on interlayer shear properties of ERS pavement system for long-span steel bridges. Constr Build Mater. 2017;143:198–209.

    Article  CAS  Google Scholar 

  14. Sun Y, Zhang Y, Xu K, Xu W, Yu D, Zhu L, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci. 2015;132(12):41694.

    Google Scholar 

  15. Luo S, Lu Q, Qian Z, Wang H, Huang Y. Laboratory investigation and numerical simulation of the rutting performance of double-layer surfacing structure for steel bridge decks. Constr Build Mater. 2017;144:178–87.

    Article  CAS  Google Scholar 

  16. Gong J, Liu Y, Wang Q, Xi Z, Cai J, Ding G, et al. Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Constr Build Mater. 2019;204:288–95.

    Article  CAS  Google Scholar 

  17. Zhang Y, Pan X, Sun Y, Xu W, Pan Y, Xie H, et al. Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater. 2014;68:62–7.

    Article  Google Scholar 

  18. Sun Y, Liu Y, Jiang Y, Xu K, Xi Z, Xie H. Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives. Int J Adhes Adhes. 2018;85:308–14.

    Article  CAS  Google Scholar 

  19. Chen R, Gong J, Jiang Y, Wang Q, Xi Z, Xie H. Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization. Constr Build Mater. 2018;186:863–70.

    Article  CAS  Google Scholar 

  20. Lu Q, Bors J. Alternate uses of epoxy asphalt on bridge decks and roadways. Constr Build Mater. 2015;78:18–25.

    Article  Google Scholar 

  21. Kang Y, Song M, Pu L, Liu T. Rheological behaviors of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Constr Build Mater. 2015;76:343–50.

    Article  Google Scholar 

  22. Gong J, Han X, Su W, Xi Z, Cai J, Wang Q, et al. Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit. J Build Eng. 2020;32:101550.

    Article  Google Scholar 

  23. Wu JP, Herrington PR, Alabaster D. Long-term durability of epoxy-modified open-graded porous asphalt wearing course. Int J Pavement Eng. 2019;20(8):920–7.

    Article  CAS  Google Scholar 

  24. Li C, Han X, Gong J, Su W, Xi Z, Zhang J, et al. Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Constr Build Mater. 2020;251:118994.

    Article  CAS  Google Scholar 

  25. Yu J, Cong P, Wu S. Laboratory investigation of the properties of asphalt modified with epoxy resin. J Appl Polym Sci. 2009;113(6):3557–63.

    Article  CAS  Google Scholar 

  26. Cong P, Yu J, Chen S. Effects of epoxy resin contents on the rheological properties of epoxy-asphalt blends. J Appl Polym Sci. 2010;118(6):3678–84.

    Article  CAS  Google Scholar 

  27. Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, et al. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim. 2014;115(2):1073–80.

    Article  CAS  Google Scholar 

  28. Liu Y, Zhang J, Jiang Y, Li C, Xi Z, Cai J, et al. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr Build Mater. 2018;165:163–72.

    Article  CAS  Google Scholar 

  29. Liu K, Lv Q, Hua J. Study on damping properties of HVBR/EVM blends prepared by in situ polymerization. Polym Test. 2017;60:321–5.

    Article  CAS  Google Scholar 

  30. Jiang Y, Han X, Gong J, Xi Z, Cai J, Wang Q, et al. Laboratory investigation of epoxy asphalt binder modified by brominated SBS. Constr Build Mater. 2019;228:116733.

    Article  CAS  Google Scholar 

  31. Zhang J, Su W, Liu Y, Gong J, Xi Z, Zhang J, et al. Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder. Constr Build Mater. 2021;270:121378.

    Article  Google Scholar 

  32. Inoue T. Reaction-induced phase decomposition in polymer blends. Prog Polym Sci. 1995;20(1):119–53.

    Article  CAS  Google Scholar 

  33. Tercjak A. Phase separation and morphology development in thermoplastic-modified thermosets. In: Guo Q, editor. Thermosets. 2nd ed. Amsterdam: Elsevier; 2018. p. 147–71.

    Chapter  Google Scholar 

  34. Su W, Han X, Gong J, Xi Z, Zhang J, Wang Q, et al. Toughening epoxy asphalt binder using core–shell rubber nanoparticles. Constr Build Mater. 2020;258:119716.

    Article  CAS  Google Scholar 

  35. Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6(9):719–28.

    Article  CAS  Google Scholar 

  36. Zhang J, Wang Y, Wang X, Ding G, Pan Y, Xie H, et al. Effects of amino- functionalized carbon nanotubes on the properties of amine- terminated butadiene-acrylonitrile rubber-toughened epoxy resins. J Appl Polym Sci. 2014;131(13):40472.

    Article  Google Scholar 

  37. Chen J-L, Chang F-C. Temperature-dependent phase behavior in poly(ϵ-caprolactone)–epoxy blends. Polymer. 2001;42(5):2193–9.

    Article  CAS  Google Scholar 

  38. Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H. Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater. 2017;137:55–65.

    Article  CAS  Google Scholar 

  39. Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J. 2002;38(2):251–64.

    Article  CAS  Google Scholar 

  40. Liu Y, Xi Z, Cai J, Xie H. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater Struct. 2017;50(5):219.

    Article  Google Scholar 

  41. GB/T 30598. General specifications of epoxy asphalt materials for paving roads and bridges. Beijing: Standards Press of China; 2014.

    Google Scholar 

  42. Xie H, Liu B, Yuan Z, Shen J, Cheng R. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. J Polym Sci Part B Polym Phys. 2004;42(20):3701–12.

    Article  CAS  Google Scholar 

  43. Williams RJJ, Rozenberg BA, Pascault J-P. Reaction-induced phase separation in modified thermosetting polymers. Adv Polym Sci. 1997;128:95–156.

    Article  CAS  Google Scholar 

  44. Xie H, Liu B, Sun Q, Yuan Z, Shen J, Cheng R. Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J Appl Polym Sci. 2005;96(2):329–35.

    Article  CAS  Google Scholar 

  45. Sahagun CM, Morgan SE. Thermal control of nanostructure and molecular network development in epoxy-amine thermosets. ACS Appl Mater Interface. 2012;4(2):564–72.

    Article  CAS  Google Scholar 

  46. Menard HP. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  47. Branthaver JF, Petersen JC, Robertson RE, Duvall JJ, Kim SS, Harnsberger PM, et al. Binder characterization and evaluation. Volume 2: chemistry. Washington: National Research Council; 1993.

    Google Scholar 

  48. Keyf S, Ismail O, Çorbacioğlu BD. Polymer-modified bitumen using ethylene terpolymers. Pet Sci Technol. 2007;25(7):915–23.

    Article  CAS  Google Scholar 

  49. Masson JF, Polomark GM. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta. 2001;374(2):105–14.

    Article  CAS  Google Scholar 

  50. Zeng X, Rose JG, Rice JS. Stiffness and damping ratio of rubber-modified asphalt mixes: potential vibration attenuation for high-speed railway trackbeds. J Vib Control. 2001;7(4):527–38.

    Article  Google Scholar 

  51. Rao MD. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib. 2003;262(3):457–74.

    Article  Google Scholar 

  52. Jiang Y, Liu Y, Gong J, Li C, Xi Z, Cai J, et al. Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Mater Struct. 2018;51(4):86.

    Article  Google Scholar 

  53. Gong J, Liu Y, Jiang Y, Wang Q, Xi Z, Cai J, et al. Performance of epoxy asphalt binder containing warm-mix asphalt additive. Int J Pavement Eng. 2021;22(2):223–32.

    Article  Google Scholar 

  54. Sun Y, Gong J, Liu Y, Jiang Y, Xi Z, Cai J, et al. Viscous, damping and mechanical properties of epoxy asphalt adhesives containing different penetration grade asphalts. J Appl Polym Sci. 2018;136:47027.

    Article  Google Scholar 

  55. Ahmadi Khoshooei M, Fazlollahi F, Maham Y. A review on the application of differential scanning calorimetry (DSC) to petroleum products. J Therm Anal Calorim. 2019;138(5):3455–84.

    Article  CAS  Google Scholar 

  56. Yamanaka K, Inoue T. Structure development in epoxy resin modified with poly(ether sulphone). Polymer. 1989;30(4):662–7.

    Article  CAS  Google Scholar 

  57. Sun Y, Han X, Su W, Gong J, Xi Z, Zhang J, et al. Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats. Polym Compos. 2020;41(8):3034–42.

    Article  CAS  Google Scholar 

  58. Sun Y, Xu K, Zhang Y, Zhang J, Chen R, Yuan Z, et al. Organic montmorillonite reinforced epoxy mortar binders. Constr Build Mater. 2016;107:378–84.

    Article  CAS  Google Scholar 

  59. Zhang Y, Sun Y, Xu K, Yuan Z, Zhang J, Chen R, et al. Brucite modified epoxy mortar binders: flame retardancy, thermal and mechanical characterization. Constr Build Mater. 2015;93:1089–96.

    Article  Google Scholar 

  60. Zhao H, Cao Y, Sit SP, Lineberry Q, Pan W. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012;107(2):541–7.

    Article  CAS  Google Scholar 

  61. Quan D, Ivankovic A. Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer. 2015;66:16–28.

    Article  CAS  Google Scholar 

  62. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng. 2008;39(6):933–61.

    Article  Google Scholar 

  63. Yin H, Zhang Y, Sun Y, Xu W, Yu D, Xie H, et al. Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct. 2015;48(11):3825–35.

    Article  CAS  Google Scholar 

  64. Bocci E, Canestrari F. Experimental evaluation of shear resistance of improved steel–asphalt interfaces. Transport Res Rec. 2013;2370(1):145–50.

    Article  Google Scholar 

  65. Barcia FL, Soares BG, Sampaio E. Adhesive properties of epoxy resin modified by end-functionalized liquid polybutadiene. J Appl Polym Sci. 2004;93(5):2370–8.

    Article  CAS  Google Scholar 

  66. Sharifnabi A, Fathi MH, Eftekhari Yekta B, Hossainalipour M. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant. Appl Surf Sci. 2014;288:331–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, Y., Gong, J. et al. Thermal and bonding properties of epoxy asphalt bond coats. J Therm Anal Calorim 147, 2013–2025 (2022). https://doi.org/10.1007/s10973-021-10630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10630-8

Keywords

Navigation