Skip to main content
Log in

Parallel finite volume method-based fluid flow computations using OpenMP and CUDA applying different schemes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Parallelization of inhouse develpoed code for numerical computations on heterogeneous computing machine is becoming common. As the numerical solvers and problem complexity are evolving, the parallel computing facilities are also growing. This research study deals with the use of four different schemes to parallelly compute the numerical flow equations based on the finite volume method. The different schemes proposed are applied for parallelization using central processing units and graphical processing units. Open multiprocessing (OpenMP) and compute unified device architecture (CUDA) are the parallel computing tools used for parallelization of the code applying four schemes, viz. red and black successive over-relaxation (RBSOR), wavefront, combined RBSOR and wavefront, and alternate RBSOR and wavefront scheme. The flow analysis is carried out for internal and external flow at different Reynolds numbers on dissimilar machines having their individual computational capability. Speedup obtained and parallel efficiency achieved using the proposed unusual parallelization method are investigated separately. The grid size for both the flow conditions is fixed during the parallel computation performance analysis. The RBSOR scheme provided the maximum speedup in all cases of flow, scheme, and tool used. The wavefront scheme provides the lowest speedup and parallel efficiency. The alternate scheme is better than the wavefront scheme and combined scheme using OpenMP. The speedup achieved and parallel efficiency obtained for the CUDA parallelized code are in the range of 200 × and 70%, respectively, applying the RBSOR scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A r :

Aspect ratio of a battery cell

C :

Constant of Ar

L :

Length of battery cell (m)

k :

Thermal conductivity (W MK1)

l o :

Length of extra outlet fluid domain (m)

l i :

Length of extra fluid domain (m)

h :

Convective heat transfer coefficient (W m2 k1)

L o :

Dimensionless length of extra outlet fluid domain

L i :

Dimensionless length of extra inlet fluid domain

Nu :

Nusselt number

q‴ :

Volumetric heat generation (W m3)

q :

Dimensionless volumetric heat generation

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature

T o :

Maximum allowable temperature of battery cell (k)

:

Non-dimensional temperature

u :

Velocity along the axial direction (m s1)

U :

Non-dimensional velocity along the axial direction

u :

Free stream velocity (m s1)

v :

Velocity along the transverse direction (m s1)

p :

Pressure (N m2)

P :

Non-dimensional pressure

V :

Non-dimensional velocity along the transverse direction

w :

Half-width (m)

W :

Non-dimensional width

x :

Axial direction

X :

Non-dimensional axial direction

y :

Transverse direction

Y :

Non-dimensional transverse direction

α :

Thermal diffusivity of fluid (m2 s1)

ν :

Kinematic viscosity of fluid (m2 s1)

ρ :

Density of fluid (kg m3)

ζ cc :

Conduction–convection parameter

avg:

Average

c:

Center

f:

Fluid domain

m:

Mean

s:

Solid domain (battery cell)

:

Free stream

References

  1. Afzal A, Ansari Z, Faizabadi A, Ramis M. Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng. 2017;24:337–63.

    Article  Google Scholar 

  2. Pinto R, Afzal A, D’Souza L, Ansari Z, Mohammed Samee AD. Computational fluid dynamics in turbomachinery: a review of state of the art. Arch Comput Methods Eng. 2017;24:467–79.

    Article  Google Scholar 

  3. Vittal Shenoy D, Safdari Shadloo M, Peixinho J, Hadjadj A. Direct numerical simulations of laminar and transitional flows in diverging pipes. Int J Numer Methods Heat Fluid Flow. 2019;30:75–92.

    Article  Google Scholar 

  4. Goodarzi M, Safaei MR, Karimipour A, Hooman K, Dahari M, Kazi SN, Sadeghinezhad E. Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures. Abstr Appl Anal. 2014;2014:15.

    Article  Google Scholar 

  5. Ebrahimpour M, Shafaghat R, Alamian R, Safdari SM (2019) Numerical investigation of the savonius vertical axis wind turbine and evaluation of the effect of the overlap parameter in both horizontal and vertical directions on its performance. Symmetry (Basel). 2019;11:821.

    Article  Google Scholar 

  6. Amiri AH, Shafaghat R, Alamian R, Taheri SM, Safdari Shadloo M. Study of horizontal axis tidal turbine performance and investigation on the optimum fixed pitch angle using CFD: a case study of Iran. Int J Numer Methods Heat Fluid Flow. 2019;30:206–27.

    Article  Google Scholar 

  7. Piquet A, Zebiri B, Hadjadj A, Safdari Shadloo M. A parallel high-order compressible flows solver with domain decomposition method in the generalized curvilinear coordinates system. Int J Numer Methods Heat Fluid Flow. 2019;30:2–38.

    Article  Google Scholar 

  8. Safaei M, Goodarzi M, Mohammadi M. Numerical modeling of turbulence mixed convection heat transfer in air filled enclosures by finite volume method. Int J Multiphys. 2011;5:307–24.

    Article  Google Scholar 

  9. Kumar R, Sesha V, Butt MM, Ahmed N, Khan SA, Afzal A. Thermo-mechanical analysis and estimation of turbine blade tip clearance of a small gas turbine engine under transient operating conditions. Appl Therm Eng. 2020;179:115700.

    Article  Google Scholar 

  10. Afzal A, Abdul Mujeebu M. Thermo-mechanical and structural performances of automobile disc brakes: a review of numerical and experimental studies. Arch Comput Methods Eng. 2019;26:1489–513.

    Article  Google Scholar 

  11. Couder-Castaneda C, Barrios-Pina H, Gitler I, Arroyo M. Performance of a code migration for the simulation of supersonic ejector flow to SMP, MIC, and GPU using OpenMP, OpenMP+LEO, and OpenACC directives. Sci Program. 2015;2015:1–20.

    Google Scholar 

  12. Frisch J, Mundani R-P, Rank E, van Treeck C. Engineering-based thermal CFD simulations on massive parallel systems. Computation. 2015;3:235–61.

    Article  Google Scholar 

  13. Liu J, Ma Z, Li S, Zhao Y. A GPU accelerated red-black SOR algorithm for computational fluid dynamics problems. Adv Mater Res. 2011;320:335–40.

    Article  Google Scholar 

  14. Niemeyer KE, Sung C-J. Recent progress and challenges in exploiting graphics processors in computational fluid dynamics. J Supercomput. 2014;67:528–64.

    Article  Google Scholar 

  15. Gropp WD, Kaushik DK, Keyes DE, Smith BF. High-performance parallel implicit CFD. Parallel Comput. 2001;27:337–62.

    Article  Google Scholar 

  16. Passoni G, Cremonesi P, Alfonsi G. Analysis and implementation of a parallelization strategy on a Navier–Stokes solver for shear flow simulations. Parallel Comput. 2001;27:1665–85.

    Article  Google Scholar 

  17. Schulz M, Krafczyk M, Tölke J, Rank E. Parallelization strategies and efficiency of CFD computations in complex geometries using lattice Boltzmann methods on high-performance computers. High Perform Sci Eng Comput. 2002;21:115–22.

    Google Scholar 

  18. Zhang LT, Wagner GJ, Liu WK. A parallelized meshfree method with boundary enrichment for large-scale CFD. J Comput Phys. 2002;176:483–506.

    Article  CAS  Google Scholar 

  19. Peigin S, Epstein B. Embedded parallelization approach for optimization in aerodynamic design. J Supercomput. 2004;29:243–63.

    Article  Google Scholar 

  20. Eyheramendy D. Object-oriented parallel CFD with JAVA. In: Parallel computational fluid dynamics 2003: advanced numerical methods, software and applications. 2004. p. 409–16.

  21. Jia R, Sundén B. Parallelization of a multi-blocked CFD code via three strategies for fluid flow and heat transfer analysis. Comput Fluids. 2004;33:57–80.

    Article  Google Scholar 

  22. Lehmkuhl O, Borrell R, Soria M, Oliva A. TermoFluids: A new parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC cluster. In: Parallel computational fluid dynamics 2007 Lecture Notes in Computational Science and Engineering. Berlin: Springer; 2009. p. 275–82.

  23. Oktay E, Akay HU, Merttopcuoglu O. Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures. Comput Fluids . 2011;49:141–5.

    Article  Google Scholar 

  24. Amritkar A, Tafti D, Liu R, Kufrin R, Chapman B. OpenMP parallelism for fluid and fluid-particulate systems. Parallel Comput. 2012;38:501–17.

    Article  Google Scholar 

  25. Amritkar A, Deb S, Tafti D. Efficient parallel CFD-DEM simulations using OpenMP. J Comput Phys. 2014;256:501–19.

    Article  Google Scholar 

  26. Shan P, Zhu R, Wang F, Wu J. Efficient approximation of free-surface Green function and OpenMP parallelization in frequency-domain wave–body interactions. J Mar Sci Technol. 2019;24:479–89. https://doi.org/10.1007/s00773-018-0568-9.

    Article  Google Scholar 

  27. Xue W, Jackson CW, Roy CJ. Multi-CPU/GPU parallelization, optimization and machine learning based autotuning of structured grid CFD codes. In: 2018 AIAA aerospace sciences meeting. 2018. p. 1–25.

  28. Inoue T, Abe T, Koshimura S, Murashima A, Kobayashi H. Development and validation of a Tsunami numerical model with the polygonally nested grid system and its MPI-parallelization for real-time Tsunami inundation forecast on a regional scale. J Disaster Res. 2019;14:416–34.

    Article  Google Scholar 

  29. T Katagiri. Hybrid parallelization techniques. In: The art of high performance computing for computational science. 2019. p. 61–8.

  30. Amiranashvili S, Radziunas M, Bandelow U, Čiegis R. Numerical methods for accurate description of ultrashort pulses in optical fibers. Commun Nonlinear Sci Numer Simul. 2019;67:391–402.

    Article  Google Scholar 

  31. Lai J, Li H, Tian Z. CPU/GPU heterogeneous parallel CFD solver and optimizations. In: Proceedings of 2018 international conference on service robotics technologies. Chengdu, China: ACM; 2018. p. 88–92.

  32. Niedermeier CA, Janssen CF, Indinger T. Massively-parallel multi-GPU simulations for fast and accurate automotive aerodynamics. In: 6th European conference on computational mechanics (ECCM 6). Glasgow, UK. 2018. p. 1–8.

  33. Mokashi I, Afzal A, Khan SA, Abdullah NA, Bin Azami MH, Jilte RD, Samuel OD. Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int J Therm Sci. 2021;161:106738. https://doi.org/10.1016/j.ijthermalsci.2020.106738.

    Article  CAS  Google Scholar 

  34. Afzal A, Samee ADM, Jilte RD, Islam T, Manokar AM, Abdul K. Battery thermal management: an optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. Int J Heat Mass Transf. 2021;166:120798.

    Article  Google Scholar 

  35. Afzal A, Mokashi I, Khan SA, Abdullah NA, Bin Azami MH. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer Heat Transf, Part A: Appl. 2021;79(5):406–35. https://doi.org/10.1080/10407782.2020.1845560.

    Article  CAS  Google Scholar 

  36. Afzal A, Abidi A, Samee A, Razak R, Soudagar M, Saleel A. Effect of parameters on thermal and fluid flow behavior of battery thermal management system. Therm Sci. 2020;290. https://doi.org/10.2298/TSCI191206290A.

  37. Mokashi I, Khan SA, Abdullah NA, Bin Azami MA, Afzal A. Maximum temperature analysis in a Li‑ion battery pack cooled by different fluids. J Therm Anal Calorim; 2020;141:2555–71. https://doi.org/10.1007/s10973-020-10063-9.

    Article  CAS  Google Scholar 

  38. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys. 1982;48:387–411.

    Article  Google Scholar 

  39. Jahangeer S, Ramis MK, Jilani G. Conjugate heat transfer analysis of a heat generating vertical plate. Int J Heat Mass Transf. 2007;50:85–93.

    Article  Google Scholar 

  40. Ramis MK, Jilani G, Jahangeer S. Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation. Int J Heat Mass Transf. 2008;51:517–25.

    Article  CAS  Google Scholar 

  41. Abdi DS, Bitsuamlak GT. Asynchronous parallelization of a CFD solver. J Comput Eng. 2015;2015:1–10.

    Article  Google Scholar 

  42. Johnsson L, Wei G, Yuen D. GPU solutions to multi-scale problems in science and engineering. Springer Verlag Lecture Series, 2011.

  43. Sanders J, Kandrot E. CUDA by example: an introduction to general-purpose GPU programming. Upper Saddle River: Addison-Wesley Professional; 2010.

    Google Scholar 

  44. Wilt N. The cuda handbook: a comprehensive guide to gpu programming. London: Pearson Education; 2013.

    Google Scholar 

  45. Farber R. CUDA application design and development. New York: Elsevier; 2011.

    Google Scholar 

  46. Darmana D, Deen NG, Kuipers JAM. Parallelization of an Euler–Lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas-liquid two-phase flow. J Comput Phys. 2006;220:216–48.

    Article  Google Scholar 

  47. Walther JH, Sbalzarini IF. Large-scale parallel discrete element simulations of granular flow. Eng Comput. 2009;26:688–97.

    Article  Google Scholar 

  48. Wang X, Guo L, Ge W, Tang D, Ma J, Yang Z, et al. Parallel implementation of macro-scale pseudo-particle simulation for particle-fluid systems. Comput Chem Eng. 2005;29:1543–53.

    Article  CAS  Google Scholar 

  49. Mininni PD, Rosenberg D, Reddy R, Pouquet A. A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 2011;37:316–26.

    Article  Google Scholar 

  50. Darmana D, Deen NG, Kuipers JAM. Parallelization of an Euler–Lagrange model using mixed domain decomposition and a mirror domain technique: application to dispersed gas–liquid two-phase flow. J Comput Phys . 2006;220:216–48.

    Article  Google Scholar 

  51. Shang Y. A distributed memory parallel Gauss–Seidel algorithm for linear algebraic systems. Comput Math with Appl. 2009;57:1369–76.

    Article  Google Scholar 

  52. Bhattacharyya S, Chattopadhyay H, Benim AC. Computational investigation of heat transfer enhancement by alternating inclined ribs in tubular heat exchanger. Prog Comput Fluid Dyn. 2017;17:390–6.

    Article  Google Scholar 

  53. Alam MW, Bhattacharyya S, Souayeh B, Dey K, Hammami F, Rahimi-Gorji M, et al. CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study. Int Commun Heat Mass Transf. 2020;112:104455.

    Article  Google Scholar 

  54. Bhattacharyya S, Chattopadhyay H, Bandyopadhyay S. Numerical study on heat transfer enhancement through a circular duct fitted with centre-trimmed twisted tape. Int J Heat Technol. 2016;34:401–6.

    Article  Google Scholar 

  55. Bhattacharyya S, Chattopadhyay H, Benim AC. Simulation of heat transfer enhancement in tube flow with twisted tape insert. Prog Comput Fluid Dyn. 2017;17:193–7.

    Article  Google Scholar 

  56. Murmu SC, Bhattacharyya S, Chattopadhyay H, Biswas R. Analysis of heat transfer around bluff bodies with variable inlet turbulent intensity: a numerical simulation. Int Commun Heat Mass Transf. 2020;117:104779.

    Article  Google Scholar 

  57. Bhattacharyya S, Chattopadhyay H, Biswas R, Ewim DRE, Huan Z. Influence of inlet turbulence intensity on transport phenomenon of modified diamond cylinder: a numerical study. Arab J Sci Eng. 2020;45:1051–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Group Program under Grant No. GRP/129/42.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asif Afzal or Suvanjan Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Saleel, C.A., Prashantha, K. et al. Parallel finite volume method-based fluid flow computations using OpenMP and CUDA applying different schemes. J Therm Anal Calorim 145, 1891–1909 (2021). https://doi.org/10.1007/s10973-021-10637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10637-1

Keywords

Navigation