Skip to main content
Log in

Microstructure and dynamic mechanical properties epoxy/asphaltene composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Asphaltenes tend to aggregate to nanoparticles or clusters in crude oil and solvents over a wide concentration and temperature range. In the present paper, asphaltenes extracted from the base asphalt was used as a filler to introduce into epoxy resin. The microstructure and evolution of asphaltenes aggregation in the epoxy resin were observed using laser scanning confocal microscopy. Furthermore, the effect of asphaltenes on the viscosity, dynamic mechanical behavior, thermostability, mechanical properties of epoxy resin was evaluated by Brookfield rotational viscometer, dynamic mechanical analysis, thermogravimetric analysis and universal testing machine. The presence of asphaltenes increased the viscosity of the neat epoxy during all stages of cure reaction. The viscosity of epoxy/asphaltenes composites increased with the filler concentration. Fractal asphaltenes aggregation formed in the composites with 1 mass% asphaltenes. Network microstructures of asphaltenes aggregation appeared in the epoxy phase with a further increase of asphaltenes content. Moreover, the increase of asphaltenes loading resulted in denser network microstructures in the epoxy matrix. Aggregation evolution revealed that asphaltenes particles redispersed evenly in the epoxy resin in the form of some aggregates at the beginning of curing. During the cure reaction of epoxy, asphaltenes aggregates started to agglomerate and grow to network microstructures. The presence of asphaltenes led to the enhancement of the storage modulus of the neat epoxy at the rubbery stage. The glass transition temperature (Tg) of the epoxy composites slightly increased with the increase of asphaltenes loading. The epoxy composite with 5 mass% asphaltenes had higher Tg than the neat epoxy. The inclusion of asphaltenes had a negligible effect on the damping properties and thermal stability of the neat epoxy. The aggregation and heterogeneous dispersion of asphaltenes resulted in the decrease of the tensile strength and elongation at break of the neat epoxy. However, the inclusion of asphaltenes significantly enhanced Young’s modulus of the neat epoxy. Young’s modulus of the neat epoxy was increased by more than fourfold with the addition of 5 mass% asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Redelius P, Soenen H. Relation between bitumen chemistry and performance. Fuel. 2015;140:34–43.

    CAS  Google Scholar 

  2. D’Melo D, Taylor R. Constitution and structure of bitumens. In: Hunter RN, Self A, Read J, editors. The shell bitumen handbook. 6th ed. London: ICE Publishing; 2015. p. 47–63.

    Google Scholar 

  3. Corbett LW. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem. 1969;41(4):576–9.

    CAS  Google Scholar 

  4. Lesueur D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interf Sci. 2009;145(1–2):42–82.

    CAS  Google Scholar 

  5. Speight JG. Petroleum asphaltenes—Part 1: asphaltenes, resins and the structure of petroleum. Oil Gas Sci Technol. 2004;59(5):467–77.

    CAS  Google Scholar 

  6. Calandra P, Caputo P, De Santo MP, Todaro L, Turco Liveri V, Oliviero RC. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr Build Mater. 2019;199:288–97.

    CAS  Google Scholar 

  7. Ghosh AK, Chaudhuri P, Kumar B, Panja SS. Review on aggregation of asphaltene vis-a-vis spectroscopic studies. Fuel. 2016;185:541–54.

    CAS  Google Scholar 

  8. Vargas FM, Tavakkoli M. Asphaltene deposition: fundamentals, prediction, prevention, and remediation. Boca Raton: CRC Press; 2018.

    Google Scholar 

  9. Wu H, Kessler MR. Asphaltene: structural characterization, molecular functionalization, and application as a low-cost filler in epoxy composites. RSC Adv. 2015;5(31):24264–73.

    CAS  Google Scholar 

  10. Wu H, Thakur VK, Kessler MR. Novel low-cost hybrid composites from asphaltene/SBS tri-block copolymer with improved thermal and mechanical properties. J Mater Sci. 2016;51(5):2394–403.

    CAS  Google Scholar 

  11. Siddiqui MN. Studies of different properties of polystyrene-asphaltene composites. Macromol Symp. 2015;354(1):184–90.

    CAS  Google Scholar 

  12. Siddiqui MN. Using asphaltenes as filler in methyl methacrylate. Polym Compos Petrol Sci Technol. 2016;34(3):253–9.

    CAS  Google Scholar 

  13. Siddiqui MN. Preparation and properties of polypropylene-asphaltene composites. Polym Compos. 2017;38(9):1957–63.

    CAS  Google Scholar 

  14. Siddiqui MN, Redhwi HH, Younas M, Alghizzi AG, Suliman MH, Achilias DS. Effect of natural macromolecule filler on the properties of high-density polyethylene (HDPE). Macromol Symp. 2018;380(1):1800072.

    Google Scholar 

  15. Siddiqui MN, Redhwi HH, Younas M, Hussain S, Achilias DS. Use of asphaltene filler to improve low-density polyethylene properties. Petrol Sci Technol. 2018;36(11):756–64.

    CAS  Google Scholar 

  16. Zhang Y, Pan X, Sun Y, Xu W, Pan Y, Xie H, et al. Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater. 2014;68:62–7.

    Google Scholar 

  17. Sun Y, Zhang Y, Xu K, Xu W, Yu D, Zhu L, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci. 2015;132(12):41694.

    Google Scholar 

  18. Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H. Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater. 2017;137:55–65.

    CAS  Google Scholar 

  19. Su W, Han X, Gong J, Xi Z, Zhang J, Wang Q, et al. Toughening epoxy asphalt binder using core-shell rubber nanoparticles. Constr Build Mater. 2020;258:119716.

    CAS  Google Scholar 

  20. Zhang J, Su W, Liu Y, Gong J, Xi Z, Zhang J, et al. Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder. Constr Build Mater. 2021;270:121378.

    CAS  Google Scholar 

  21. Sun Y, Liu Y, Jiang Y, Xu K, Xi Z, Xie H. Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives. Int J Adhes Adhes. 2018;85:308–14.

    CAS  Google Scholar 

  22. Sun Y, Han X, Su W, Gong J, Xi Z, Zhang J, et al. Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats. Polym Compos. 2020;41(8):3034–42.

    CAS  Google Scholar 

  23. Sun Y, Liu Y, Gong J, Han X, Xi Z, Zhang J, et al. Thermal and bonding properties of epoxy asphalt bond coats. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10630-8.

    Article  Google Scholar 

  24. Gong J, Han X, Su W, Xi Z, Cai J, Wang Q, et al. Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit. J Build Eng. 2020;32:101550.

    Google Scholar 

  25. Liu Y, Zhang J, Jiang Y, Li C, Xi Z, Cai J, et al. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr Build Mater. 2018;165:163–72.

    CAS  Google Scholar 

  26. Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, et al. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim. 2014;115(2):1073–80.

    CAS  Google Scholar 

  27. Gong J, Liu Y, Wang Q, Xi Z, Cai J, Ding G, et al. Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Constr Build Mater. 2019;204:288–95.

    CAS  Google Scholar 

  28. Li C, Han X, Gong J, Su W, Xi Z, Zhang J, et al. Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Constr Build Mater. 2020;251:118994.

    CAS  Google Scholar 

  29. Sun Y, Gong J, Liu Y, Jiang Y, Xi Z, Cai J, et al. Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. J Appl Polym Sci. 2019;136(5):47027.

    Google Scholar 

  30. Koots JA, Speight JG. Relation of petroleum resins to asphaltenes. Fuel. 1975;54(3):179–84.

    CAS  Google Scholar 

  31. Liu Y, Xi Z, Cai J, Xie H. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater Struct. 2017;50(5):219.

    Google Scholar 

  32. ASTM D 4124. Standard test methods for separation of asphalt into four fractions. West Conshohocken, PA, USA: American Society for Testing and Materials; 2001.

  33. Jiang Y, Liu Y, Gong J, Li C, Xi Z, Cai J, et al. Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Mater Struct. 2018;51(4):86.

    Google Scholar 

  34. Luo P, Gu Y. Effects of asphaltene content on the heavy oil viscosity at different temperatures. Fuel. 2007;86(7):1069–78.

    CAS  Google Scholar 

  35. Zhang Y, Sun Y, Xu K, Yuan Z, Zhang J, Chen R, et al. Brucite modified epoxy mortar binders: flame retardancy, thermal and mechanical characterization. Constr Build Mater. 2015;93:1089–96.

    Google Scholar 

  36. Chen R, Gong J, Jiang Y, Wang Q, Xi Z, Xie H. Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization. Constr Build Mater. 2018;186:863–70.

    CAS  Google Scholar 

  37. Gong J, Liu Y, Jiang Y, Wang Q, Xi Z, Cai J, et al. Performance of epoxy asphalt binder containing warm-mix asphalt additive. Int J Pavement Eng. 2021;22(2):223–32.

    CAS  Google Scholar 

  38. Yin H, Zhang Y, Sun Y, Xu W, Yu D, Xie H, et al. Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct. 2015;48(11):3825–35.

    CAS  Google Scholar 

  39. Jiang Y, Han X, Gong J, Xi Z, Cai J, Wang Q, et al. Laboratory investigation of epoxy asphalt binder modified by brominated SBS. Constr Build Mater. 2019;228:116733.

    CAS  Google Scholar 

  40. Mueller M. Introduction to confocal fluorescence microscopy. 2nd ed. Bellingham, Washington, USA: SPIE Press; 2005.

    Google Scholar 

  41. Oh K, Ring TA, Deo MD. Asphaltene aggregation in organic solvents. J Colloid Interf Sci. 2004;271(1):212–9.

    CAS  Google Scholar 

  42. Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, et al. Advances in asphaltene science and the Yen-Mullins model. Energ Fuel. 2012;26(7):3986–4003.

    CAS  Google Scholar 

  43. Goertzen WK, Kessler MR. Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair. Compos Part B Eng. 2007;38(1):1–9.

    Google Scholar 

  44. Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced. Polym Compos Constr Build Mater. 2016;106:149–59.

    CAS  Google Scholar 

  45. Ma P-C, Mo S-Y, Tang B-Z, Kim J-K. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon. 2010;48(6):1824–34.

    CAS  Google Scholar 

  46. Serena Saw WP, Mariatti M. Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. J Mater Sci Mater Electron. 2012;23(4):817–24.

    CAS  Google Scholar 

  47. Saba N, Paridah MT, Abdan K, Ibrahim NA. Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater. 2016;124:133–8.

    CAS  Google Scholar 

  48. Devi LU, Bhagawan SS, Thomas S. Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym Compos. 2010;31(6):956–65.

    CAS  Google Scholar 

  49. Saba N, Alothman OY, Almutairi Z, Jawaid M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Constr Build Mater. 2019;201:138–48.

    CAS  Google Scholar 

  50. George SC, Ninan KN, Groeninckx G, Thomas S. Styrene–butadiene rubber/natural rubber blends: morphology, transport behavior, and dynamic mechanical and mechanical properties. J Appl Polym Sci. 2000;78(6):1280–303.

    CAS  Google Scholar 

  51. Nassar NN, Hassan A, Pereira-Almao P. Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J Therm Anal Calorim. 2012;110(3):1327–32.

    CAS  Google Scholar 

  52. Sun Y, Xu K, Zhang Y, Zhang J, Chen R, Yuan Z, et al. Organic montmorillonite reinforced epoxy mortar binders. Constr Build Mater. 2016;107:378–84.

    CAS  Google Scholar 

  53. Ignatenko VY, Kostyuk AV, Smirnova NM, Antonov SV, Ilyin SO. Asphaltenes as a tackifier for hot-melt adhesives based on the styrene-isoprene-styrene block copolymer. Polym Eng Sci. 2020;60(9):2224–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Wang or Hongfeng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Su, W., Gong, J. et al. Microstructure and dynamic mechanical properties epoxy/asphaltene composites. J Therm Anal Calorim 147, 2209–2219 (2022). https://doi.org/10.1007/s10973-021-10689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10689-3

Keywords

Navigation