Skip to main content
Log in

Heat transfer and entropy generation in a MHD Couette–Poiseuille flow through a microchannel with slip, suction–injection and radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flow, heat transfer and entropy generation in a vertical microchannel made of two parallel porous plates (the injection plate kept at rest while the suction plate is moving in upward/downward direction) under the combined action of buoyancy force and transverse magnetic field are studied. Variable pressure gradient (favorable/adverse) due to Couette–Poiseuille (C–P) flow is considered here. This is one of the fundamental problems of applied science and engineering. Slip conditions for the velocity at plates are implemented for both moving-plate directions and pressure gradients with the help of classical C–P flow. The basic equations are solved numerically by using Runge–Kutta–Fehlberg method along with shooting technique. Numerical results are in concordance with previously published results for specific cases. The present results are frequently compared with those of the classical C–P flow. Influence of operational parameters (plate movement, pressure gradient, injection–suction rate, slip length, Grashof Number, temperature ratio (between hotter to colder side) and viscous dissipation effect) on the flow and heat transfer characteristics (velocity, temperature, Nusselt number (Nu) distribution, entropy generation and Bejan Number) are investigated here. An effort is made to search singularity in the variation of Nu with some parameters, and find the parameters’ values at which the global entropy is minimally generated in the channel. Finally, a critical analysis is conducted on the individual contribution of irreversibilities due to heat flow, fluid friction and Joule heating to the total entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Jha BK, Apere CA. Magnetohydrodynamic Free Convective Couette Flow With Suction and Injection. J Heat Transfer. 2011;133:092501.

    Article  Google Scholar 

  2. Gaikwad HS, Baghe P, Sarma R, Mondal PK. Transport of neutral solutes in a viscoelastic solvent through a porous microchannel. Phys Fluids. 2019;31:022006. https://doi.org/10.1063/1.5064777.

    Article  CAS  Google Scholar 

  3. Ibáñez G, López A, Pantoja J, Moreira J, Reyes JA. Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels. Energy. 2013;50:143–9. https://doi.org/10.1016/j.energy.2012.11.036.

    Article  Google Scholar 

  4. Makinde OD, Chinyoka T. Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. J Mech Sci Technol. 2013;27(5):1557–68. https://doi.org/10.1007/s12206-013-0221-9.

    Article  Google Scholar 

  5. Khan Mi, Hayat T , Alsaedi A. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip. Phys. Fluids. 2018;30:023601. https://doi.org/10.1063/1.5019940

  6. Ibáñez G. Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int J Heat Mass Transf. 2015;80:274–80. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.025.

    Article  Google Scholar 

  7. Ibáñez G, López A, Pantoja J, Moreira J. Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int J Heat Mass Transf. 2016;100:89–97. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.089.

    Article  CAS  Google Scholar 

  8. López A, Ibáñez G, Pantoja J, Moreira J, Lastres O. Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int J Heat Mass Transf. 2017;107:982–94. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.126.

    Article  CAS  Google Scholar 

  9. Davaa G, Shigechi T, Momoki S. Effect of viscous dissipation on fully developed heat transfer of Non-Newtonian fluids in plane laminar Poiseuille–Couette flow. Int Commun Heat Mass Transfer. 2004;31:663–72.

    Article  CAS  Google Scholar 

  10. Aydin O, Avci M. Viscous-dissipation effects on the heat transfer in a Poiseuille flow. Appl Energy. 2006;83:495–512.

    Article  CAS  Google Scholar 

  11. Zahid WA, Yin Y, Zhu K. Couette–Poiseuille flow of a gas in long microchannels. Microfluid Nanofluid. 2007;3:55–64. https://doi.org/10.1007/s10404-006-0108-5.

    Article  Google Scholar 

  12. Ishaka A, Nazara R, Pop I. Boundary layer flow and heat transfer past a moving plate with suction and injection. In: Proceeding of the third international conference on Mathematical sciences. AIP conference proceeding. 2014;1602:435–442.

  13. Chen T. Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-law stretched sheet with surface heat flux. Int J Therm Sci. 2008;47:954–61. https://doi.org/10.1016/j.ijthermalsci.2007.06.003.

    Article  CAS  Google Scholar 

  14. Attia HA, Abdeen MAM, El-D. Abdin A. Nonsteady flow of a power-law fluid in a porous medium between parallel plates with heat transfer, suction, and injection. J Eng Phys Thermophys 2013;86(3):723–729.

  15. Nemitallah MA, Ohir AE. Investigations of heat transfer, entropy generation and pressure build up for upward flow in a vertical channel equipped with a fin array. Heat Mass Transf. 2016;52:1953–61.

    Article  CAS  Google Scholar 

  16. Bejan A. A study of entropy generation in fundamental Conwectife heat transfer. Trans ASME. 1979;101:718–25.

    Article  Google Scholar 

  17. Das S, Chakraborty S, Jana RN, Makinde OD. Entropy analysis of an unsteady magneto-nanofluid flow past an accelerating stretching sheet with convective boundary condition. Appl Math Mech. 2015;36(12):1593–610. https://doi.org/10.1007/s10483-015-2003-6.

    Article  Google Scholar 

  18. Srinivasacharya D, Bindu KH. Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions. Energy. 2015;91:72–83. https://doi.org/10.1016/j.energy.2015.08.014.

    Article  Google Scholar 

  19. Brinkman HC. Heat effects in capillary flow I. Appl Sci Res. 1951;A2:120–4.

    Article  Google Scholar 

  20. Aydin O. Effects of viscous dissipation on the heat transfer in forced pipe flow. Part 1: both hydrodynamically and thermally fully developed flow. Energy Convers Manage. 2005;46:757–69.

    Article  Google Scholar 

  21. Mohseni MM, Tissot G, Badawi M. Effects of wall slip on convective heat transfers of Giesekus Fluid in Microannulu. J Heat Transf. 2020. https://doi.org/10.1115/1.4046642.

    Article  Google Scholar 

  22. Mondal PK. Entropy analysis for the Couette flow of nonNewtonian fluids between asymmetrically heated parallel plates: effect of applied pressure gradient. Phys Scr. 2014;89(12):125003. http://iopscience.iop.org/1402-4896/89/12/125003.

  23. Ibáñez G, López A, López I, Pantoja J, Moreira J, Lastres O. Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions. J Therm Anal Calorim. 2019;135(6):3401–20. https://doi.org/10.1007/s10973-018-7558-3.

    Article  CAS  Google Scholar 

  24. Hajmohammadi MR, Haji Molla Ali Tork MH. Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid. Physica A. 2019;523:234–45. https://doi.org/10.1016/j.physa.2019.02.037.

    Article  CAS  Google Scholar 

  25. Tlili I, Hamadneh NN, Khan WA, Atawneh S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water based nanofluids in a rotating channel with radiation and Hall effects. J Therm Anal Calorim. 2018;132(3):1899–912. https://doi.org/10.1007/s10973-018-7066-5.

    Article  CAS  Google Scholar 

  26. Mondal PK, Dholey S. Effect of conjugate heat transfer on the irreversibility generation rate in a combined CouetteePoiseuille flow between asymmetrically heated parallel plates: The entropy minimization analysis. Energy. 2015;83:55–64.

    Article  Google Scholar 

  27. Mondal PK, Gaikwad H, Kundu PK, Wongwises S. Effect of thermal asymmetries on the entropy generation analysis of a variable viscosity Couette–Poiseuille flow. Proc Inst Mech Eng E J Process Mech Eng. 2017;231(5):1011–24.

    Article  Google Scholar 

  28. Ranjit NK, Shit GC. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Phys A. 2017;482:458–76. https://doi.org/10.1016/j.physa.2017.04.072.

    Article  CAS  Google Scholar 

  29. Ellahi R, Alamri SZ, Basit A, Majeed A. To Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82. https://doi.org/10.1080/16583655.2018.1483795.

    Article  Google Scholar 

  30. Venkata Ramudu AC, Anantha Kumar K, Sugunamma V, Sandeep N. Influence of suction/injection on MHD Casson fluid flow over a vertical stretching surface. J Therm Anal Calorim. 2019;139(6):3675–82. https://doi.org/10.1007/s10973-019-08776-7.

    Article  CAS  Google Scholar 

  31. Hayat T, Qayyum S, Khan MI, Alsaedi A. Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating. Phys Fluids. 2018;30:017101. https://doi.org/10.1063/1.5009611.

    Article  CAS  Google Scholar 

  32. Seth GS, Bhattacharyya A, Kumar R, Chamkha AJ. Entropy generation in hydromagnetic nanofluid flow over a non-linear stretching sheet with Navier’s velocity slip and convective heat transfer. Phys Fluids. 2018;30:122003. https://doi.org/10.1063/1.5054099.

    Article  CAS  Google Scholar 

  33. Gaikwad, Sanjay H, Basu, Narayan D, Mondal PK. Non–linear drag induced irreversibility minimization in a viscous dissipative flow through a micro–porous channel. Energy. 2017;119:558-600.

  34. Monaledi RL, Makinde OD. Entropy generation analysis in a microchannel Poiseuille flows of nanofluid with nanoparticles injection and variable propertiesm. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09919-x.

    Article  Google Scholar 

  35. Navier Clmh. Mmoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. France. VI. 1823;389-440.

  36. Lin TF, Hawks KH, Leidenfrost W. Analysis of viscous dissipation effect on thermal entrance heat transfer in laminar pipe flows with convective boundary conditions. Warm Stoffubertrag. 1983;17:97–105.

    Article  Google Scholar 

  37. Etminan-Farooji V, Ebrahimnia-Bajestan E, Niazmand H, Wongwises S. Unconfined laminar nanofluid flow and heat transfer around a square cylinder. Int J Heat Mass Transfer. 2012;55:1475–85. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dilip K. Maiti acknowledges the offer of the associate fellowship of The Institute of Mathematical Sciences (IMSc) Chennai, INDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip K. Maiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., Maiti, D.K., Shit, G.C. et al. Heat transfer and entropy generation in a MHD Couette–Poiseuille flow through a microchannel with slip, suction–injection and radiation. J Therm Anal Calorim 147, 4253–4273 (2022). https://doi.org/10.1007/s10973-021-10731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10731-4

Keywords

Navigation