Skip to main content
Log in

Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Back-propagation modeling of viscosity and shear stress of Ionic-MXene nanofluid is carried out in this work. The data for Ionic-MXene nanofluid of 0.05, 0.1, and 0.2 mass concentration (mass%) are collected from the experimental analysis. Shear stress and viscosity as a function of shear rate and mass% of MXene nanoparticles is used as input. Additionally, viscosity as a function of temperature and % of MXene nanoparticles is collected separately. Based on the possible combinations, five back-propagation algorithms are developed. In each algorithm, five models depending upon the number of neurons in the hidden layer are used. The training and testing of all the models in each algorithm are performed. Statistical analysis of the network output is done to evaluate the accuracy of models by finding the losses in terms of mean squared error (MAE), root-mean-squared error, mean absolute error, (MAE), and error deviation. Model 1 is found to have lower accuracy than the remaining models as the number of neurons in its hidden layer is only one. The performance evaluation metrices of the back-propagation model show that the error involved is acceptable. The training and testing of the algorithms are satisfactory as the network output is found to be in comfortably good agreement with the desired experimental output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

MSE:

Mean square error

RMSE:

Root-mean-square error

MAE:

Mean absolute error

AAD:

%Error deviation

BPA:

Back-propagation algorithm

RBF:

Radial basis function

MLP:

Multilayer perceptron

Mass%:

Mass concentration

References

  1. Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68. https://doi.org/10.1016/j.rser.2010.11.035.

    Article  CAS  Google Scholar 

  2. Dey D, Kumar P, Samantaray S. A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf—Asian Res. 2017;46:1413–42. https://doi.org/10.1002/htj.21282.

    Article  Google Scholar 

  3. Hussein AM, Kadirgama K, Noor MM. Nanoparticles suspended in ethylene glycol thermal properties and applications: An overview. Renew Sustain Energy Rev. 2017;69:1324–30. https://doi.org/10.1016/j.rser.2016.12.047.

    Article  CAS  Google Scholar 

  4. Afzal A, Samee ADM, Razak RKA, Ramis MK. Heat transfer characteristics of MWCNT nanofluid in rectangular mini channels. Int J Heat Technol. 2018;36:222–8. https://doi.org/10.18280/ijht.360130.

    Article  Google Scholar 

  5. Afzal A, Rk AR, Ad MS, Kareemulla M, Yashwantha KM, Raju S, et al. Heat Transfer Analysis of Triple Tube Heat Exchanger using Water and Titanium-dioxide Nanofluid. In: Twelve Int. Conf. Therm. Eng. Theory Appl., February 23–26, 2019, Gandhinagar, India: 2019, p. 1–3.

  6. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36. https://doi.org/10.1016/j.enconman.2015.08.053.

    Article  CAS  Google Scholar 

  7. Nagarajan PK, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for solar collector applications: a review. Energy Proc. 2014;61:2416–34. https://doi.org/10.1016/j.egypro.2014.12.017.

    Article  CAS  Google Scholar 

  8. Verma SK, Tiwari AK. Progress of nanofluid application in solar collectors: a review. Energy Convers Manag. 2015;100:324–46. https://doi.org/10.1016/j.enconman.2015.04.071.

    Article  CAS  Google Scholar 

  9. Alawi OA, Sidik NAC, Kherbeet AS. Nanorefrigerant effects in heat transfer performance and energy consumption reduction: a review. Int Commun Heat Mass Transf. 2015;69:76–83. https://doi.org/10.1016/j.icheatmasstransfer.2015.10.009.

    Article  CAS  Google Scholar 

  10. Kasaeian A, Hosseini SM, Sheikhpour M, Mahian O, Yan WM, Wongwises S. Applications of eco-friendly refrigerants and nanorefrigerants: a review. Renew Sustain Energy Rev. 2018;96:91–9. https://doi.org/10.1016/j.rser.2018.07.033.

    Article  CAS  Google Scholar 

  11. Nazari MA, Ahmadi MH, Sadeghzadeh M, Shafii MB, Goodarzi M. A review on application of nanofluid in various types of heat pipes. J Cent South Univ. 2019;26:1021–41. https://doi.org/10.1007/s11771-019-4068-9.

    Article  Google Scholar 

  12. Sureshkumar R, Mohideen ST, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: a review. Renew Sustain Energy Rev. 2013;20:397–410. https://doi.org/10.1016/j.rser.2012.11.044.

    Article  CAS  Google Scholar 

  13. Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong B, Forrest E. Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. NuclTechnol. 2008;162:80–91. https://doi.org/10.13182/NT08-A3934.

    Article  CAS  Google Scholar 

  14. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008. https://doi.org/10.1007/s10973-018-7477-3.

    Article  CAS  Google Scholar 

  15. Ali F, Aamina KI, Sheikh NA, Gohar M, Tlili I. Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: a generalized Brinkman-Type fluid model with non-singular Kernel. Sci Rep. 2018;8:1–13. https://doi.org/10.1038/s41598-018-33547-z.

    Article  CAS  Google Scholar 

  16. Ghadimi A, Metselaar IH. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9. https://doi.org/10.1016/j.expthermflusci.2013.06.001.

    Article  CAS  Google Scholar 

  17. Ali F, Reinert L, Levêque J, Duclaux L, Muller F, Saeed S, et al. Effect of sonication conditions : Solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles. Ultrason Sonochem. 2013. https://doi.org/10.1016/j.ultsonch.2013.10.010.

    Article  PubMed  Google Scholar 

  18. Li F, Li L, Zhong G, Zhai Y, Li Z. Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids. Int J Heat Mass Transf. 2019;129:278–86. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.104.

    Article  CAS  Google Scholar 

  19. Asadi A, Alarifi IM, Ali V, Nguyen HM. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. UltrasonSonochem. 2019;58:104639. https://doi.org/10.1016/j.ultsonch.2019.104639.

    Article  CAS  Google Scholar 

  20. Xia G, Jiang H, Liu R, Zhai Y. Effects of surfactant on the stability and thermal conductivity of Al 2O3/de-ionized water nanofluids. Int J Therm Sci. 2014;84:118–24. https://doi.org/10.1016/j.ijthermalsci.2014.05.004.

    Article  CAS  Google Scholar 

  21. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53. https://doi.org/10.1016/j.rser.2016.11.111.

    Article  CAS  Google Scholar 

  22. Yashawantha KM, Vinod AV. ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol : water nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09756-y.

    Article  Google Scholar 

  23. Yashawantha KM, Afzal A, Ramis MK, Ukkund SJ. Experimental Investigation on Physical and Thermal Properties of Graphite Nanofluids. In: AIP Conf. Proc., Vol. 2039, AIP; 2018, p. 020057. https://doi.org/10.1063/1.5079016.

  24. Yashawantha KM, Asif A, RavindraBabu G, Ramis MK. Rheological behavior and thermal conductivity of graphite-ethylene glycol nanofluid. J Test Eval. 2019;49:20190255. https://doi.org/10.1520/jte20190255.

    Article  Google Scholar 

  25. Hemmat EM. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim. 2017;127:2125–31. https://doi.org/10.1007/s10973-016-5725-y.

    Article  CAS  Google Scholar 

  26. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39. https://doi.org/10.1016/j.rser.2015.10.042.

    Article  CAS  Google Scholar 

  27. Tiwari AK, Ghosh P, Sarkar J. Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng. 2013;57:24–32. https://doi.org/10.1016/j.applthermaleng.2013.03.047.

    Article  CAS  Google Scholar 

  28. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52. https://doi.org/10.1016/j.rser.2017.03.113.

    Article  CAS  Google Scholar 

  29. Ramezanizadeh M, Ahmadi MH, Nazari MA, Sadeghzadeh M, Chen L. A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew Sustain Energy Rev. 2019;114:109345. https://doi.org/10.1016/j.rser.2019.109345.

    Article  CAS  Google Scholar 

  30. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002.

    Article  CAS  Google Scholar 

  31. Afrand M, Ahmadi Nadooshan A, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int Commun Heat Mass Transf. 2016;77:49–53. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.008.

    Article  CAS  Google Scholar 

  32. Vakili M, Khosrojerdi S, Aghajannezhad P, Yahyaei M. A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int Commun Heat Mass Transf. 2017;82:40–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.003.

    Article  CAS  Google Scholar 

  33. Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/s41598-017-17444-5.

    Article  CAS  Google Scholar 

  34. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Mater (Basel). 2017;10:552. https://doi.org/10.3390/ma10050552.

    Article  CAS  Google Scholar 

  35. Derakhshanfard F, Mehralizadeh A. Application of artificial neural networks for viscosity of crude oil-based nanofluids containing oxides nanoparticles. J Pet Sci Eng. 2018;168:263–72. https://doi.org/10.1016/j.petrol.2018.05.018.

    Article  CAS  Google Scholar 

  36. Shadloo MS, Rahmat A, Karimipour A, Wongwises S. Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J Energy ResourTechnol. 2020. https://doi.org/10.1115/14047593.

    Article  Google Scholar 

  37. Ansari HR, Zarei MJ, Sabbaghi S, Keshavarz P. A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. Int Commun Heat Mass Transf. 2018;91:158–64. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.012.

    Article  CAS  Google Scholar 

  38. Ahmadi MH, Mohseni-Gharyehsafa B, Farzaneh-Gord M, Jilte RD, Kumar R, Wing Chau K. Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP MARS and MPR algorithms. EngApplComput Fluid Mech. 2019;13:220–8. https://doi.org/10.1080/19942060.2019.1571442.

    Article  Google Scholar 

  39. Anil Kumar Naik B, Venu Vinod A. ANN modeling of the viscosity and effective thermal conductivity of non-newtoniannanofluids. J Test Eval. 2019;47:791–808. https://doi.org/10.1520/JTE20170274.

    Article  Google Scholar 

  40. Shahsavar A, Khanmohammadi S, Toghraie D, Salihepour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: Measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276:850–60. https://doi.org/10.1016/j.molliq.2018.12.055.

    Article  CAS  Google Scholar 

  41. Ahmadi MH, Sadeghzadeh M, Maddah H, Solouk A, Kumar R, Wing Chau K. Precise smart model for estimating dynamic viscosity of SiO2/ethylene glycol–water nanofluid. EngApplComput Fluid Mech. 2019;13:1095–105. https://doi.org/10.1080/19942060.2019.1668303.

    Article  Google Scholar 

  42. Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys A Stat Mech Its Appl. 2019;534:122142. https://doi.org/10.1016/j.physa.2019.122142.

    Article  CAS  Google Scholar 

  43. Yadav D, Dansena P, Ghosh SK, Singh PK. A unique multilayer perceptron model (ANN) for different oxide/EG nanofluid’s viscosity from the experimental study. Phys A Stat Mech Its Appl. 2020;549:124030. https://doi.org/10.1016/j.physa.2019.124030.

    Article  CAS  Google Scholar 

  44. Parashar N, Seraj M, Mohd S, Mohd Y. Development of an artificial neural network for the prediction of relative viscosity of ethylene glycol based nanofluids. SN Appl Sci. 2020. https://doi.org/10.1007/s42452-020-03269-x.

    Article  Google Scholar 

  45. Alade IO, Rahman MAA, Hassan A, Saleh TA. Modeling the viscosity of nanofluids using artificial neural network and Bayesian support vector regression. J ApplPhys. 2020;128:085306. https://doi.org/10.1063/5.0008977.

    Article  CAS  Google Scholar 

  46. Maleki A, Elahi M, Assad MEH, Alhuyi Nazari M, Safdari Shadloo M, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09373-9.

    Article  Google Scholar 

  47. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296–306. https://doi.org/10.1016/j.renene.2020.02.087.

    Article  CAS  Google Scholar 

  48. Haghighi A, Shadloo MS, Maleki A, AbdollahzadehJamalabadi MY. Using committee neural network for prediction of pressure drop in two-phase microchannels. ApplSci. 2020. https://doi.org/10.3390/APP10155384.

    Article  Google Scholar 

  49. Ghalandari M, Maleki A, Haghighi A, Safdari Shadloo M, Alhuyi Nazari M, Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J MolLiq. 2020;313:113476. https://doi.org/10.1016/j.molliq.2020.113476.

    Article  CAS  Google Scholar 

  50. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS, karimipour A, . A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09998-w.

    Article  Google Scholar 

  51. David O, Okwu MO, Oyejide OJ, Taghinezhad E, Asif A, Kaveh M. Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel. 2020;281:118701. https://doi.org/10.1016/j.fuel.2020.118701.

    Article  CAS  Google Scholar 

  52. Afzal A, Ansari Z, Faizabadi A, Ramis M. Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng. 2017;24:337–63. https://doi.org/10.1007/s11831-016-9165-4.

    Article  Google Scholar 

  53. Afzal A, Samee ADM, Jilte RD, Islam T, Manokar AM, Abdul K. Battery thermal management : an optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. Int J Heat Mass Transf. 2021;166:120798. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120798.

    Article  Google Scholar 

  54. Afzal A, Saleel CA, Badruddin IA, Khan TMY, Kamangar S, Mallick Z, et al. Human thermal comfort in passenger vehicles using an organic phase change material– an experimental investigation, neural network modelling, and optimization. Build Environ. 2020;180:107012. https://doi.org/10.1016/j.buildenv.2020.107012.

    Article  Google Scholar 

  55. Kumar M, Afzal A, Ramis MK. Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. Tribol - Finnish J Tribol. 2017;35:6–15.

    Google Scholar 

  56. Afzal A, Aabid A, Khan A, Afghan S, Rajak U, Nath T, et al. Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded high-speed aerodynamic flows. Aerosp Sci Technol. 2020;107:106318. https://doi.org/10.1016/j.ast.2020.106318.

    Article  Google Scholar 

  57. Afzal A, MohammedSamee AD, Abdul Razak RK. Experimental thermal investigation of CuO-W nanofluid in circular minichannel. Model Meas Control B. 2017;86:335–44.

    Article  Google Scholar 

  58. Afzal A, Samee ADM, Razak RKA. Comparative thermal performance analysis of water, engine coolant oil and MWCNT-W nanofluid in a radiator. Model Meas Control B. 2018;87:1–6.

    Article  Google Scholar 

  59. Afzal A, Mohammed Samee AD, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135:1797–811. https://doi.org/10.1007/s10973-018-7664-2.

    Article  CAS  Google Scholar 

  60. Afzal A, Khan SA, Salee CA. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuOnanofluids. Mater Res Exp. 2019;6:1150d8. https://doi.org/10.1088/2053-1591/ab5013.

    Article  Google Scholar 

  61. Afzal A, Ramis MK. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J Energy Storage. 2020;32:101815. https://doi.org/10.1016/j.est.2020.101815.

    Article  Google Scholar 

  62. Afzal A, Imran Mokashi SA, Khan NAA. Muhammad Azami bin H. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer Heat Transf Part A Appl. 2020. https://doi.org/10.1080/10407782.2020.1845560.

    Article  Google Scholar 

  63. Mokashi I, Afzal A, Khan SA, Abdullah NA, Bin Azami MH, Jilte RD, et al. Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int J ThermSci. 2021. https://doi.org/10.1016/j.ijthermalsci.2020.106738.

    Article  Google Scholar 

  64. Parashar N, Aslfattahi N, Yahya SM, Saidur R. An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09638-3.

    Article  Google Scholar 

  65. Das L, Habib K, Aslfattahi N, Yahya SM, Rubbi F. Improved thermophysical properties and energy efficiency of aqueous ionic liquid/mxenenanofluid in a hybrid PV/T solar system. Nanomaterials. 2020;10:1372. https://doi.org/10.3390/nano10071372.

    Article  CAS  PubMed Central  Google Scholar 

  66. Lopes N, Ribeiro B. Hybrid Learning in a Multi Neural Network Architecture. IEEE IntJtConf Neural Netw. 2001;4:2788–93.

    Google Scholar 

  67. Lopes N, Ribeiro B. GPU implementation of the multiple back-propagation algorithm. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2009;5788 LNCS:449–56. https://doi.org/10.1007/978-3-642-04394-9_55.

  68. Lopes N, Ribeiro B. Stochastic GPU-based multithread implementation of multiple back-propagation. In: ICAART 2010—2nd Int Conf Agents Artif Intell Proc 2010;1:271–6. https://doi.org/10.5220/0002722102710276.

  69. Lopes N, Ribeiro B. An evaluation of multiple feed-forward networks on GPUs. Int J Neural Syst. 2011;21:31–47. https://doi.org/10.1142/S0129065711002638.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asif Afzal or R. Saidur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Yashawantha, K.M., Aslfattahi, N. et al. Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluids. J Therm Anal Calorim 145, 2129–2149 (2021). https://doi.org/10.1007/s10973-021-10743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10743-0

Keywords

Navigation