Skip to main content
Log in

The enhanced heat transfer of diathermic oil-based alumina-doped zinc oxide nanofluids for domestic solar heating systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Doped material-based nanofluids, as an extension of single-phase nanofluids, expand the performance of heat transfer fluids. In this study, a new type of diathermic oil (DO)-based alumina-doped zinc oxide (AZO) nanofluids was prepared, and the thermophysical characteristics of nanofluids were analyzed. It could be found that the addition of new doped nanoparticles made up for the deficiency in the performance of DO as heat transfer fluid (HTF). Compared with the pure DO, the thermal conductivity of the AZO nanofluids (0.08 mass%) was increased by 8.125%. And the viscosity of nanofluids was decreased by 70% as the temperature increased. So as to further determine the application of nanofluids in the domestic heating system, the parameters of forced convection heat transfer in the tube were analyzed in this article. The convective heat transfer coefficient of AZO nanofluids increased with the increase in temperature. At 50 ℃, the convective heat transfer coefficient of 0.08 mass% AZO nanofluid reached the maximum of 5.49% compared with pure DO. More importantly, this research investigated the heat transfer benefits of using nanofluids in domestic solar heating systems. These promising results indicated that AZO nanofluids showed excellent properties at higher temperatures. It shows DO-based AZO nanofluids application potential in domestic solar heating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AZO:

Alumina-doped zinc oxide

DO:

Diathermic oil

HTF:

Heat transfer fluid

TC:

Thermal conductivity

DMBNs:

Doped material-based nanofluids

MWCNT:

Multi-walled carbon nanotubes

RTC:

Relative thermal conductivity

Nu:

Nusselt number

Re:

Reynolds number

Pr:

Prandtl number

E k :

Enhancement coefficient of thermal conductivity

E μ :

Enhancement coefficient of viscosity

m :

Quality

c p :

Specific heat capacity

k :

Thermal conductivity

k r :

Relative thermal conductivity

d :

The internal diameter of the tube

L :

The length of the tube

u :

The flow rate of the fluid

ρ :

Density

φ :

Volume fraction

μ :

Viscosity

α :

Convective heat transfer coefficient

ω :

Mass fraction

nf:

Nanofluids

n:

Nanoparticles

f:

Base fluid

References

  1. Ahmadi A, Ehyaei MA, Doustgani A, El Haj AM, Hmida A, Jamali DH, et al. Recent residential applications of low-temperature solar collector. J Clean Prod. 2021;279:123549. https://doi.org/10.1016/j.jclepro.2020.123549.

    Article  Google Scholar 

  2. Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sust Energy Rev. 2017;72:10–32. https://doi.org/10.1016/j.rser.2017.01.015.

    Article  CAS  Google Scholar 

  3. Sharafeldin MA, Gróf G, Abu-Nada E, Mahian O. Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114205.

    Article  Google Scholar 

  4. Babita SSK, Gupta SM. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016. https://doi.org/10.1016/j.expthermflusci.2016.06.029.

    Article  Google Scholar 

  5. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Conference: 1995 International mechanical engineering congress and exhibition, San Francisco, CA (United States), 12–17 Nov 1995; Other information: PBD: Oct 1995. ; Argonne National Lab., IL (United States); 1995

  6. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, et al. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138(5):3007–21. https://doi.org/10.1007/s10973-019-08320-7.

    Article  CAS  Google Scholar 

  7. Qi C, Wan Y-L, Li C-Y, Han D-T, Rao Z-H. Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube. Int J Heat Mass Trans. 2017;115:1072–84. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.098.

    Article  CAS  Google Scholar 

  8. Qi C, Luo T, Liu M, Fan F, Yan Y. Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Conv Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111877.

    Article  Google Scholar 

  9. Gómez-Villarejo R, Estellé P, Navas J. Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Solar Energy Mater Solar Cells. 2020. https://doi.org/10.1016/j.solmat.2019.110266.

    Article  Google Scholar 

  10. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev. 2019;103:556–92. https://doi.org/10.1016/j.rser.2018.12.057.

    Article  CAS  Google Scholar 

  11. Ali HM, Ali H, Liaquat H, Bin Maqsood HT, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015;84:317–24. https://doi.org/10.1016/j.energy.2015.02.103.

    Article  CAS  Google Scholar 

  12. Sharafeldin MA, Gróf G, Mahian O. Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy. 2017;141:2436–44. https://doi.org/10.1016/j.energy.2017.11.068.

    Article  CAS  Google Scholar 

  13. Bhalla V, Khullar V, Tyagi H. Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector. Renew Energy. 2018;123:616–26. https://doi.org/10.1016/j.renene.2018.01.042.

    Article  CAS  Google Scholar 

  14. Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline water-based fluid. Int J Heat Mass Transf. 2017;107:264–70. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.048.

    Article  CAS  Google Scholar 

  15. Żyła G, Vallejo JP, Lugo L. Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types: an experimental study. J Mol Liq. 2018;261:530–9. https://doi.org/10.1016/j.molliq.2018.04.012.

    Article  CAS  Google Scholar 

  16. Sadeghinezhad E, Mehrali M, Saidur R, Mehrali M, Tahan Latibari S, Akhiani AR, et al. A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers Manage. 2016;111:466–87. https://doi.org/10.1016/j.enconman.2016.01.004.

    Article  CAS  Google Scholar 

  17. Yazid MNAWM, Sidik NAC, Yahya WJ. Heat and mass transfer characteristics of carbon nanotube nanofluids: a review. Renew Sustain Energy Reviews. 2017. https://doi.org/10.1016/j.rser.2017.05.192.

    Article  Google Scholar 

  18. Li X, Chen W, Zou C. The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: a surface modification approach. Powder Technol. 2020;361:957–67. https://doi.org/10.1016/j.powtec.2019.10.106.

    Article  CAS  Google Scholar 

  19. Ghafurian MM, Dastjerd F, Afsharian A, Esfahani FR, Niazmand H, Behzadnia H, et al. Low-cost zinc-oxide nanoparticles for solar-powered steam production superficial and volumetric approaches. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2020.124261.

    Article  Google Scholar 

  20. Asadi A, Pourfattah F. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019;343:296–308. https://doi.org/10.1016/j.powtec.2018.11.023.

    Article  CAS  Google Scholar 

  21. Sepyani K, Afrand M, Hemmat EM. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204. https://doi.org/10.1016/j.molliq.2017.04.016.

    Article  CAS  Google Scholar 

  22. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al 2 O 3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Thermal Fluid Sci. 2017;81:420–9. https://doi.org/10.1016/j.expthermflusci.2016.09.013.

    Article  CAS  Google Scholar 

  23. Mukherjee S, Mishra PC, Chaudhuri P. Thermo-economic performance analysis of Al2O3-water nanofluids: an experimental investigation. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112200.

    Article  Google Scholar 

  24. Kim H, Gilmore CM, Horwitz JS, Piqué A, Murata H, Kushto GP, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl Phys Lett. 2000;76(3):259–61. https://doi.org/10.1063/1.125740.

    Article  CAS  Google Scholar 

  25. Marouf S, Beniaiche A, Kardarian K, Mendes MJ, Sanchez-Sobrado O, Águas H, et al. Low-temperature spray-coating of high-performing ZnO: Al films for transparent electronics. J Anal Appl Pyrol. 2017;127:299–308. https://doi.org/10.1016/j.jaap.2017.07.021.

    Article  CAS  Google Scholar 

  26. Drewelow G, Reed A, Stone C, Roh K, Jiang Z-T, Truc LNT, et al. Work function investigations of Al-doped ZnO for band-alignment in electronic and optoelectronic applications. Appl Surf Sci. 2019;484:990–8. https://doi.org/10.1016/j.apsusc.2019.04.079.

    Article  CAS  Google Scholar 

  27. Saidur R, Kazi SN, Hossain MS, Rahman MM, Mohammed HA. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev. 2011;15(1):310–23. https://doi.org/10.1016/j.rser.2010.08.018.

    Article  CAS  Google Scholar 

  28. Colangelo G, Favale E, Miglietta P, Milanese M, de Risi A. Thermal conductivity, viscosity and stability of Al 2 O 3 -diathermic oil nanofluids for solar energy systems. Energy. 2016;95:124–36. https://doi.org/10.1016/j.energy.2015.11.032.

    Article  CAS  Google Scholar 

  29. Ahmed SF, Khalid M, Rashmi W, Chan A, Shahbaz K. Recent progress in solar thermal energy storage using nanomaterials. Renew Sustain Energy Rev. 2017;67:450–60. https://doi.org/10.1016/j.rser.2016.09.034.

    Article  CAS  Google Scholar 

  30. Vaschetto S, Darmani MA, Cavagnino A, Tenconi A, editors. Nanofluids for rotating electrical machines cooling: perspectives and challenges. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe); 2019 3–5 Sept. 2019.

  31. Kulkarni DP, Das DK, Vajjha RS. Application of nanofluids in heating buildings and reducing pollution. Appl Energy. 2009;86(12):2566–73. https://doi.org/10.1016/j.apenergy.2009.03.021.

    Article  CAS  Google Scholar 

  32. Colangelo G, Favale E, de Risi A, Laforgia D. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl Energy. 2012;97:828–33. https://doi.org/10.1016/j.apenergy.2011.11.026.

    Article  CAS  Google Scholar 

  33. Li X, Zou C, Zhou L, Qi A. Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf. 2016;97:631–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.056.

    Article  CAS  Google Scholar 

  34. Wang X, He Y, Chen M, Hu Y. ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors. Sol Energy Mater Sol Cells. 2018;179:185–93. https://doi.org/10.1016/j.solmat.2017.11.012.

    Article  CAS  Google Scholar 

  35. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al 2 O 3 -MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036.

    Article  CAS  Google Scholar 

  36. Wei B, Zou C, Yuan X, Li X. Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. Int J Heat Mass Transf. 2017;107:281–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.044.

    Article  CAS  Google Scholar 

  37. Aberoumand S, Jafarimoghaddam A. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J Taiwan Inst Chem Eng. 2017;71:315–22. https://doi.org/10.1016/j.jtice.2016.12.035.

    Article  CAS  Google Scholar 

  38. Wei B, Zou C, Li X. Experimental investigation on stability and thermal conductivity of diathermic oil based TiO2 nanofluids. Int J Heat Mass Transf. 2017;104:537–43. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.078.

    Article  CAS  Google Scholar 

  39. Ilyas SU, Pendyala R, Narahari M. Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf A. 2017;527:11–22. https://doi.org/10.1016/j.colsurfa.2017.05.004.

    Article  CAS  Google Scholar 

  40. Yang L, Mao M, Huang J-n, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2019.08.031.

    Article  Google Scholar 

  41. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  42. Li X, Zou C. Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: an experimental investigation. Int J Heat Mass Transf. 2016;101:412–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.089.

    Article  CAS  Google Scholar 

  43. Dadwal A, Joy PA. Influence of chain length of long-chain fatty acid surfactant on the thermal conductivity of magnetite nanofluids in a magnetic field. Colloids Surf A. 2018;555:525–31. https://doi.org/10.1016/j.colsurfa.2018.07.034.

    Article  CAS  Google Scholar 

  44. Almanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.111025.

    Article  Google Scholar 

  45. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta. 2008;469(1–2):98–103. https://doi.org/10.1016/j.tca.2008.01.008.

    Article  CAS  Google Scholar 

  46. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115(17):8527–33. https://doi.org/10.1021/jp200273g.

    Article  CAS  Google Scholar 

  47. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res Lett. 2011;6(1):221. https://doi.org/10.1186/1556-276X-6-221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5(1):167–71. https://doi.org/10.1023/A:1024438603801.

    Article  CAS  Google Scholar 

  49. Maxwell JC. A treatise on electricity and magnetism, Vol 2. Oxford: Clarendon press, 1881.

  50. Davis RH. The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys. 1986;7(3):609–20. https://doi.org/10.1007/BF00502394.

    Article  CAS  Google Scholar 

  51. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76(6):061203. https://doi.org/10.1103/PhysRevE.76.061203.

    Article  CAS  Google Scholar 

  52. Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys. 1906;324:289–306. https://doi.org/10.1002/andp.19063240204.

    Article  Google Scholar 

  53. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004.

    Article  CAS  Google Scholar 

  54. Chen H, Ding Y, He Y, Tan C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett. 2007;444(4–6):333–7. https://doi.org/10.1016/j.cplett.2007.07.046.

    Article  CAS  Google Scholar 

  55. Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936;28(12):1429–35. https://doi.org/10.1021/ie50324a027.

    Article  CAS  Google Scholar 

  56. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):133108. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Research Foundation of Chengdu University of Technology (10912-2019KYQD-07545). The authors would like to acknowledge the technical support of Ceshigo Research Service Agency (www.ceshigo.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, X. & Luo, B. The enhanced heat transfer of diathermic oil-based alumina-doped zinc oxide nanofluids for domestic solar heating systems. J Therm Anal Calorim 147, 3977–3988 (2022). https://doi.org/10.1007/s10973-021-10758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10758-7

Keywords

Navigation