Skip to main content
Log in

Exergetic, exergo-economic, and exergo-environmental analyses of a trigeneration system driven by biomass and natural gas

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to study the thermodynamic, economic, and environmental aspects of a integrated system combined cooling, heating, and power generation system empowered by biomass and natural gas. Eco-Indicator 99 method is utilized to quantify the environmental impact. The proposed system consists of four main subsystems producing power, heating, and cooling. Natural gas is mixed with the syngas to enhance its heating value. The results indicate that the exergy efficiency of system is 39.45%, the products cost per exergy unit is 9.71 $ h−1, and the products environmental impact per exergy unit is 4422 mpt GJ−1. Also, when the natural gas mass flow rate-to-syngas mass flow rate ratio increases from 0 to 0.5, the exergy efficiency is found to improve by 71.97%, whereas the products cost per exergy unit and environmental impact per exergy unit of total products are seen to decline by 70.75 and 64.09%, correspondingly. Additionally, the exergy efficiency enhances by 19.48%, while the cost and environmental impact per exergy unit of the total products drop by 13.39 and 13.02%, respectively, as the splitter separation ratio increases from 0 to1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AC:

Air compressor

ABS:

Absorber

ARC:

Absorption refrigeration cycle

BGC:

Biogas compressor

CC:

Combustion chamber

CCHP:

Combined cooling heating power

CI:

Capital investment

CON:

Condenser

COP:

Coefficient of performance

CRF:

Capital recovery factor

DWH:

Domestic water heater

EVA:

Evaporator

GCU:

Gas clean unite

GMR:

Gas mass ratio

GT:

Gas turbine

HEX:

Heat exchanger

HTHEX:

High temperature heat exchanger

HPG:

High pressure generator

LCOE:

Levelized cost of energy

LPG:

Low pressure generator

LTHEX:

Low temperature heat exchanger

NG:

Natural gas

O&M:

Operation and maintenance

REC:

Recuperator

SR:

Split ratio

SRC:

Steam Rankine cycle

TUR:

Turbine

V:

Valve

A :

Heat transfer area (\({\rm {m}}^{2})\)

\(\dot{B}\) :

Environmental impact rate (m Points s1)

b :

Environmental impact rate per exergy unit (m Points GJ1)

\(\dot{C}\) :

Cost rate of each stream ($ h1)

C :

Cost per exergy unit ($ GJ1)

\(\dot{E}\) :

Exergy rate (kW)

h :

Specific enthalpy (kJ kg1)

\(i_{r}\) :

Interest rate (%)

\(\dot{m}\) :

Mass flow rate (kg s1)

\(n\) :

Service life

P :

Pressure (kPa)

\(\dot{Q}\) :

Heat rate (kW)

R :

Universal gas constant (kJ kmol1 K1)

\(r_{p}\) :

Pressure ratio

TCI:

Total capital investment ($)

\(\dot{W}\) :

Work rate (kW)

\(Y\) :

Component-related environmental impact (mpt)

\(Z\) :

Total annual levelized costs ($)

η :

Efficiency (%)

\(\Phi\) :

Operation and maintenance coefficient

\(\tau\) :

Operation hours (hr)

\(\varepsilon\) :

Exergy efficiency

η :

Efficiency (%)

ch:

Chemical

CO:

Construction

D:

Destruction

DI:

Disposal

F:

Fuel

Inlet:

Inlet condition

is:

Isentropic

KN:

Kinetic

L:

Loss

ng:

Natural gas

outlet:

Outlet condition

P:

Product

PF:

Pollutants formation

ph:

Physical

PT:

Potential

References

  1. Petrakopoulou F, Tsatsaronis G, Morosuk T. Evaluation of a power plant with chemical looping combustion using an advanced exergoeconomic analysis. Sustain Energy Technol Assess. 2013;3:9–16. https://doi.org/10.1016/j.seta.2013.05.001.

    Article  Google Scholar 

  2. Maleki A, Haghighi A, El Haj Assad M, Mahariq I, Alhuyi Nazari M. A review on the approaches employed for cooling PV cells. Sol Energy. 2020;209:170–85. https://doi.org/10.1016/j.solener.2020.08.083.

    Article  Google Scholar 

  3. Ameri M, Mohammadzadeh M. Thermodynamic, thermoeconomic and life cycle assessment of a novel integrated solar combined cycle (ISCC) power plant. Sustain Energy Technol Assess. 2018;27:192–205. https://doi.org/10.1016/j.seta.2018.04.011.

    Article  Google Scholar 

  4. Meyer L, Buchgeister J, Tsatsaronis G, Schebek L. Formation of environmental impacts in energy conversion processes revealed by a novel exergoenvironmental analysis, ASME Int. Mech Eng Congr Expo Proc. 2007;6:409–13. https://doi.org/10.1115/IMECE200742210.

    Article  Google Scholar 

  5. Meyer L, Tsatsaronis G, Buchgeister J, Schebek L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy. 2009;34:75–89. https://doi.org/10.1016/j.energy.2008.07.018.

    Article  Google Scholar 

  6. Meyer L, Castillo R, Buchgeister J, Tsatsaronis G. Application of exergoeconomic and exergoenvironmental analysis to an SOFC system with an allothermal biomass gasifier. Int J Thermodyn. 2009;12:177–86. https://doi.org/10.5541/ijot.1034000255.

    Article  CAS  Google Scholar 

  7. Habibi H, Zoghi M, Chitsaz A, Javaherdeh K, Ayazpour M, Bellos E. Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy–exergy analysis. Sustain Energy Technol Assess. 2020;39:100699. https://doi.org/10.1016/j.seta.2020.100699.

    Article  Google Scholar 

  8. Başoğul Y. Environmental assessment of a binary geothermal sourced power plant accompanied by exergy analysis. Energy Convers Manag. 2019;195:492–501. https://doi.org/10.1016/j.enconman.2019.05.033.

    Article  Google Scholar 

  9. Wang W, Wang J, Lu Z, Wang S. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source. Energy Convers Manag. 2020;211:112765. https://doi.org/10.1016/j.enconman.2020.112765.

    Article  CAS  Google Scholar 

  10. Casas-Ledón Y, Spaudo F, Arteaga-Pérez LE. Exergoenvironmental analysis of a waste-based Integrated Combined Cycle (WICC) for heat and power production. J Clean Prod. 2017;164:187–97. https://doi.org/10.1016/j.jclepro.2017.06.211.

    Article  CAS  Google Scholar 

  11. Cavalcanti EJC, Lima MSR, de Souza GF. Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses. Renew Energy. 2020;156:1336–1347. https://doi.org/10.1016/j.renene.2019.11.153.

    Article  Google Scholar 

  12. Abusoglu A, Sedeeq MS. Comparative exergoenvironmental analysis and assessment of various residential heating systems. Energy Build. 2013;62:268–77. https://doi.org/10.1016/j.enbuild.2013.03.024.

    Article  Google Scholar 

  13. Blumberg T, Lee YD, Morosuk T, Tsatsaronis G. Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas. Energy. 2019;181:1273–84. https://doi.org/10.1016/j.energy.2019.05.171.

    Article  CAS  Google Scholar 

  14. Zhang X, Zeng R, Mu K, Liu X, Sun X, Li H. Exergetic and exergoeconomic evaluation of co-firing biomass gas with natural gas in CCHP system integrated with ground source heat pump. Energy Convers Manag. 2019;180:622–40. https://doi.org/10.1016/j.enconman.2018.11.009.

    Article  CAS  Google Scholar 

  15. Moharamian A, Soltani S, Rosen MA, Mahmoudi SMS, Morosuk T. Exergoeconomic analysis of natural gas fired and biomass post-fired combined cycle with hydrogen injection into the combustion chamber. J Clean Prod. 2018;180:450–65. https://doi.org/10.1016/j.jclepro.2018.01.156.

    Article  CAS  Google Scholar 

  16. Zainal ZA, Ali R, Lean CH, Seetharamu KN. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass material. Energy Convers Manag. 2001;42:1499–515. https://doi.org/10.1016/S0196-8904(00)00078-9.

    Article  CAS  Google Scholar 

  17. Suresh NS, Thirumalai NC, Dasappa S. Modeling and analysis of solar thermal and biomass hybrid power plants. Appl Therm Eng. 2019;160:114121. https://doi.org/10.1016/j.applthermaleng.2019.114121.

    Article  Google Scholar 

  18. Puig-arnavat M, Bruno JC, Coronas A. Review and analysis of biomass gasification models. Renew Sustain Energy Rev. 2010;14:2841–51. https://doi.org/10.1016/j.rser.2010.07.030.

    Article  CAS  Google Scholar 

  19. Safari F, Tavasoli A, Ataei A. Gasification of Iranian walnut shell as a bio-renewable resource for hydrogen-rich gas production using supercritical water technology. Int J Ind Chem. 2017;8:29–36. https://doi.org/10.1007/s40090-016-0093-9.

    Article  CAS  Google Scholar 

  20. Hughes EE, Tillman DA. Biomass cofiring: status and prospects fuel process. Technol. 1996;54(1998):127–42. https://doi.org/10.1016/S0378-3820(97)00064-7.

    Article  Google Scholar 

  21. Ruoppolo G, Ammendola P, Chirone R, Miccio F. H 2 -rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Manag. 2012;32:724–32. https://doi.org/10.1016/j.wasman.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  22. Alnouss A, Mckay G, Al-ansari T. A techno-economic-environmental study evaluating the potential of oxygen- steam biomass gasification for the generation of value-added products. Energy Convers Manag. 2019;196:664–76. https://doi.org/10.1016/j.enconman.2019.06.019.

    Article  CAS  Google Scholar 

  23. Yang S, Li B, Zheng J, Kumar R. Biomass-to-Methanol by dual-stage entrained flow gasification : design and techno-economic analysis based on system modeling. J Clean Prod. 2018;205:364–74. https://doi.org/10.1016/j.jclepro.2018.09.043.

    Article  CAS  Google Scholar 

  24. S. Klein, B. Ouweneel, M. Engineering, S.E. Lab-, A. Society, M. Engineers, A. Society, A. Engineers, A. Solar, E. Society, G. Nellis, J.A. Kaiser, M. Engineering, C. Society, No Title, n.d.

  25. Li J, Mohammadi A, Maleki A. Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle, and parabolic trough collector. J Therm Anal Calorim. 2020;139:2691–703. https://doi.org/10.1007/s10973-019-08855-9.

    Article  CAS  Google Scholar 

  26. Haghighi A, Pakatchian MR, Assad MEH, Duy VN, Alhuyi Nazari M. A review on geothermal organic rankine cycles: modeling and optimization. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10357-y.

    Article  Google Scholar 

  27. Sanaye S, Khakpaay N, Chitsaz A, Yahyanejad MH. Thermoeconomic and environmental analysis and multi-criteria optimization of an innovative high-efficiency trigeneration system for a residential complex using LINMAP and TOPSIS decision-making methods. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10517-0.

    Article  Google Scholar 

  28. Fakhari I, Behinfar P, Raymand F, Azad A, Ahmadi P, Houshfar E, Ashjaee M. 4E analysis and tri-objective optimization of a triple-pressure combined cycle power plant with combustion chamber steam injection to control NOx emission. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10493-5.

    Article  Google Scholar 

  29. Balafkandeh S, Zare V, Gholamian E. Multi-objective optimization of a tri-generation system based on biomass gasification/digestion combined with S-CO 2 cycle and absorption chiller. Energy Convers Manag. 2019;200:112057. https://doi.org/10.1016/j.enconman.2019.112057.

    Article  CAS  Google Scholar 

  30. Golchoobian H, Saedodin S, Ghorbani B. Exergetic and economic evaluation of a novel integrated system for trigeneration of power, refrigeration and freshwater using energy recovery in natural gas pressure reduction stations. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10607-7.

    Article  Google Scholar 

  31. Palacios-bereche R, Gonzales R, Nebra SA. Exergy calculation of lithium bromide–water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr-H. 2012;36(2):166–181. https://doi.org/10.1002/er.179.

  32. Detchusananard T, Sharma S, Maréchal F. Multi-objective optimization of sorption enhanced steam biomass gasification with solid oxide fuel cell. Energy Convers Manag. 2019;182:412–29. https://doi.org/10.1016/j.enconman.2018.12.047.

    Article  CAS  Google Scholar 

  33. Es R, Mehrpooya M, Moosavian SMA. Thermodynamic assessment of an integrated biomass and coal co- gasi fi cation, cryogenic air separation unit with power generation cycles based on LNG vaporization. Energy Convers Manag. 2018;157:438–51. https://doi.org/10.1016/j.enconman.2017.12.026.

    Article  CAS  Google Scholar 

  34. Wang J, Yang Y. Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Convers Manag. 2016;124:566–77. https://doi.org/10.1016/j.enconman.2016.07.059.

    Article  Google Scholar 

  35. Zhang X, Zeng R, Du T, He Y, Tian H, Mu K, Liu X. Conventional and energy level based exergoeconomic analysis of biomass and natural gas fi red polygeneration system integrated with ground source heat pump and PEM electrolyzer. Energy Convers Manag. 2019;195:313–27. https://doi.org/10.1016/j.enconman.2019.05.017.

    Article  CAS  Google Scholar 

  36. Baghernejad A, Yaghoubi M. Exergoeconomic analysis and optimization of an Integrated solar combined cycle system ( ISCCS ) using genetic algorithm. Energy Convers Manag. 2011;52:2193–203. https://doi.org/10.1016/j.enconman.2010.12.019.

    Article  Google Scholar 

  37. Maleki A, Ngo PTT, Shahrestani MI. Energy and exergy analysis of a PV module cooled by an active cooling approach. J Therm Anal Calorim. 2020;141:2475–85. https://doi.org/10.1007/s10973-020-09916-0.

    Article  CAS  Google Scholar 

  38. Açıkkalp E, Aras H, Hepbasli A. Advanced exergoeconomic analysis of an electricity-generating facility that operates with natural gas. Energy convers manag. 2014;78:452–60. https://doi.org/10.1016/j.enconman.2013.11.003.

    Article  Google Scholar 

  39. Ekrataleshian A, Pourfayaz F, Ahmadi MH. Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10310-z.

    Article  Google Scholar 

  40. Abdollahpour A, Ghasempour R, Kasaeian A, Ahmadi MH. Exergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink. J Therm Anal Calorim. 2020;139:451–73. https://doi.org/10.1007/s10973-019-08375-6.

    Article  CAS  Google Scholar 

  41. Ghorbani B, Hamedi MH, Shirmohammadi R, Hamedi M, Mehrpooya M. Exergoeconomic analysis and multi-objective Pareto optimization of the C3MR liquefaction process. Sustain Energy Technol Assess. 2016;17:56–67. https://doi.org/10.1016/j.seta.2016.09.001.

    Article  Google Scholar 

  42. Luo D, Huang D. Thermodynamic and exergoeconomic investigation of various SCO2 Brayton cycles for next generation nuclear reactors. Energy Convers Manag. 2020;209:112649. https://doi.org/10.1016/j.enconman.2020.112649.

    Article  CAS  Google Scholar 

  43. Kandilli C, Uzel M. Exergoeconomic analysis of photovoltaic thermal systems based on phase change materials and natural zeolites for thermal management. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10574-z.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mehrpooya M, Ghorbani B, Abedi H. Biodiesel production integrated with glycerol steam reforming process, solid oxide fuel cell (SOFC) power plant. Energy Convers Manag. 2020;206:112467. https://doi.org/10.1016/J.ENCONMAN.2020.112467.

    Article  CAS  Google Scholar 

  45. Khanmohammadi S, Atashkari K, Kouhikamali R. Exergoeconomic multi-objective optimization of an externally fi red gas turbine integrated with a biomass gasi fi er. Appl Therm Eng. 2015;91:848–59. https://doi.org/10.1016/j.applthermaleng.2015.08.080.

    Article  CAS  Google Scholar 

  46. Aali A, Pourmahmoud N, Zare V. Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Convers Manag. 2017;143:377–90. https://doi.org/10.1016/j.enconman.2017.04.025.

    Article  CAS  Google Scholar 

  47. Zhang X, Li H, Liu L, Bai C, Wang S, Song Q. Exergetic and exergoeconomic assessment of a novel CHP system integrating biomass partial gasi fi cation with ground source heat pump. Energy Convers Manag. 2018;156:666–79. https://doi.org/10.1016/j.enconman.2017.11.075.

    Article  Google Scholar 

  48. Khani L, Mahmoudi SMS, Chitsaz A, Rosen MA. Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell. Energy. 2016;94:64–77. https://doi.org/10.1016/J.ENERGY.2015.11.001.

    Article  CAS  Google Scholar 

  49. Sahu MK. Sanjay, Thermoeconomic investigation of basic and intercooled gas turbine based power utilities incorporating air-film blade cooling. J Clean Prod. 2018;170:842–56. https://doi.org/10.1016/j.jclepro.2017.09.030.

    Article  Google Scholar 

  50. Zhang X, Liu X, Sun X, Jiang C, Li H, Song Q. Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds. Energy Convers Manag. 2018;172:105–18. https://doi.org/10.1016/j.enconman.2018.07.002.

    Article  Google Scholar 

  51. Owebor K, Oko COC, Diemuodeke EO, Ogorure OJ. Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants. Appl Energy. 2019;239:1385–401. https://doi.org/10.1016/J.APENERGY.2019.02.032.

    Article  Google Scholar 

  52. Behzadi A, Habibollahzade A, Ahmadi P, Gholamian E, Houshfar E. Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production. Energy. 2019;169:696–709. https://doi.org/10.1016/J.ENERGY.2018.12.047.

    Article  CAS  Google Scholar 

  53. Akrami E, Nemati A, Nami H, Ranjbar F. ScienceDirect Exergy and exergoeconomic assessment of hydrogen and cooling production from concentrated PVT equipped with PEM electrolyzer and LiBr-H 2 O absorption chiller. Int J Hydrogen Energy. 2017;1–12. https://doi.org/10.1016/j.ijhydene.2017.11.007.

  54. Cavalcanti EJC, Carvalho M, Jonathan JL. Exergoenvironmental results of a eucalyptus biomass-fired power plant. Energy. 2019. https://doi.org/10.1016/j.energy.2019.116188.

    Article  Google Scholar 

  55. Pavlović A, Nikolić D, Jovanovic S, Bošković G, Skerlić J. Life cycle assessment of the car tire with eco indicator 99 methodology. Mobil Veh Mech. 2019;45(3):13–23. https://doi.org/10.24874/mvm.2019.45.03.02.

    Article  Google Scholar 

  56. Cavalcanti EJC. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renew Sustain Energy Rev. 2017;67:507–19. https://doi.org/10.1016/j.rser.2016.09.017.

    Article  Google Scholar 

  57. Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy. 2011;36:2202–14. https://doi.org/10.1016/j.energy.2010.05.020.

    Article  CAS  Google Scholar 

  58. Boyano A, Morosuk T, Blanco-Marigorta AM, Tsatsaronis G. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J Clean Prod. 2012;20:152–60. https://doi.org/10.1016/j.jclepro.2011.07.027.

    Article  CAS  Google Scholar 

  59. M. Goedkoop, R. Spriensma, The eco-indicator 99: a damage oriented method for life cycle impact assessment, Methodology annex. https://www.pre-sustainability.com/download/EI99_annexe_v3.pdf;, Pre Concultants. (2001) 1–83 [accessed 17.01.15]. http://ci.nii.ac.jp/naid/10014712580/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roghayeh Ghasempour or Ata Chitsaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, M., Ghasempour, R., Ahmadi, M.H. et al. Exergetic, exergo-economic, and exergo-environmental analyses of a trigeneration system driven by biomass and natural gas. J Therm Anal Calorim 147, 4303–4323 (2022). https://doi.org/10.1007/s10973-021-10813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10813-3

Keywords

Navigation