Skip to main content
Log in

Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Industrial surplus heat is a great available source and because of potential for external use can create benefits for society and industry. Utilizing surplus heat can deliver a way to decrease the use of primary energy and to play a part in global CO2 mitigation. The potential of using excess heat in the main industrial CO2 capture and utilization plant of Iran is investigated. A CO2 liquefaction cycle i.e., ammonia-water absorption system is developed using the heat waste of the flue gas. Process modeling is developed in Aspen Hysys™ v.10 software with the aid of Peng-Robinson equation of state. Energy, exergy, economic and exergoeconomic analyses are then employed to evaluate the developed CO2 liquefaction cycle integrated into the carbon capture and utilization plant. Results of process design and simulation show that the developed CO2 liquefaction system can liquify CO2 with the capacity of 54.5 tons per day using the flue gas enthalpy. The developed CO2 liquefaction system has the COP of 0.28, and overall exergy efficiency of 69.7%. The highest amount of exergy is destructed in ammonia reboiler with the amount of 281.92 kW. Exergoeconomic results reveal that the compressors in CO2 compression unit along with ammonia absorber and stripper have the highest importance among equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARS:

Absorption refrigeration system

CCU:

Carbon capture and utilization

CCUS:

Carbon capture utilization and storage

EH:

Excess heat

HR:

Heat recovery

C:

Cost (USD)

ex:

Specific exergy (J kg−1)

\(\dot{E}_\text{D}\) :

Exergy destruction rate (kW)

\(\dot{E}_\text{f}\) :

Fuel exergy rate (kW)

\(\dot{E}_\text{p}\) :

Product exergy rate (kW)

h:

Specific enthalpy (kJ kg−1)

K:

Component

ṁ:

Mass flow rate (kg s−1)

P:

Pressure (kPa)

\(\dot{Q}\) :

Rate of heat transfer (kW)

R:

Universal gas constant (kJ kmol−1 K−1)

S:

Specific entropy (kJ kg−1 K−1)

T:

Temperature (\(\mathrm{K}\))

V:

Velocity (m s−1)

\(\dot{W}\) :

Work transfer rate (kW)

\(\dot{Z}\) :

Capital investment (USD)

\(\varepsilon\) :

Efficiency

φ:

Maintenance factor

\(\tau\) :

Annual operating hours

0:

Reference state condition (1 atm, 298 K)

1 2… 116:

Points in Fig. 2

Ph:

Physical exergy

Ch:

Chemical exergy

D :

Destruction

F :

Fuel

P :

Product

tot:

Total

i :

Number of components

n :

Number of operation years

References

  1. Adams I, Thomas A, Hoseinzade L, Madabhushi PB, Okeke IJ. Comparison of CO2 capture approaches for fossil-based power generation: review and meta-study. Processes. 2017;5(3):44.

    Article  Google Scholar 

  2. Chen Y-H, Shen M-T, Chang H, Ho C-D. Control of solvent-based post-combustion carbon capture process with optimal operation conditions. Processes. 2019;7(6):366.

    Article  CAS  Google Scholar 

  3. Romeo LM, Minguell D, Shirmohammadi R, Andrés JM. Comparative analysis of the efficiency penalty in power plants of different amine-based solvents for CO2 capture. Ind Eng Chem Res. 2020;59(21):10082–92. https://doi.org/10.1021/acs.iecr.0c01483.

    Article  CAS  Google Scholar 

  4. Davarpanah A, Mirshekari B. Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs. J Therm Anal Calorim. 2020;139(2):1161–9. https://doi.org/10.1007/s10973-019-08498-w.

    Article  CAS  Google Scholar 

  5. Shirmohammadi R, Ghorbani B, Hamedi M, Hamedi M-H, Romeo LM. Optimization of mixed refrigerant systems in low temperature applications by means of group method of data handling (GMDH). J Nat Gas Sci Eng. 2015;26:303–12. https://doi.org/10.1016/j.jngse.2015.06.028.

    Article  Google Scholar 

  6. Cansino JM, Sánchez-Braza A, Espinoza N. Moving towards a green decoupling between economic development and environmental stress? A new comprehensive approach for Ecuador. Clim Dev. 2021. https://doi.org/10.1080/17565529.2021.1895701.

    Article  Google Scholar 

  7. Broberg Viklund S, Johansson MT. Technologies for utilization of industrial excess heat: potentials for energy recovery and CO2 emission reduction. Energy Convers Manage. 2014;77:369–79. https://doi.org/10.1016/j.enconman.2013.09.052.

    Article  CAS  Google Scholar 

  8. Mahmoudan A, Samadof P, Kumar R, Jalili M, Issakhov A. Emergy-based exergoeconomic and exergoenvironmental evaluation of a combined power and cooling system based on ORC-VCR. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10422-6.

    Article  Google Scholar 

  9. Naeimi A, Bidi M, Ahmadi MH, Kumar R, Sadeghzadeh M, Alhuyi NM. Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory. Thermal Sci Eng Prog. 2019;9:299–307. https://doi.org/10.1016/j.tsep.2018.12.007.

    Article  Google Scholar 

  10. Viklund SB, Johansson MT. Technologies for utilization of industrial excess heat: potentials for energy recovery and CO2 emission reduction. Energy Convers Manage. 2014;77:369–79.

    Article  Google Scholar 

  11. Woolley E, Luo Y, Simeone A. Industrial waste heat recovery: a systematic approach. Sustain Energy Technol Assess. 2018;29:50–9. https://doi.org/10.1016/j.seta.2018.07.001.

    Article  Google Scholar 

  12. Saleh S, Pirouzfar V, Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants. J Therm Anal Calorim. 2019;136(4):1817–30. https://doi.org/10.1007/s10973-018-7809-3.

    Article  CAS  Google Scholar 

  13. Sharifi S, Nozad Heravi F, Shirmohammadi R, Ghasempour R, Petrakopoulou F, Romeo LM. Comprehensive thermodynamic and operational optimization of a solar-assisted LiBr/water absorption refrigeration system. Energy Rep. 2020;6:2309–23. https://doi.org/10.1016/j.egyr.2020.08.013.

    Article  Google Scholar 

  14. Bagheri BS, Shirmohammadi R, Mahmoudi SMS, Rosen MA. Optimization and comprehensive exergy-based analyses of a parallel flow double-effect water-lithium bromide absorption refrigeration system. Appl Therm Eng. 2019;152:643–53. https://doi.org/10.1016/j.applthermaleng.2019.02.105.

    Article  CAS  Google Scholar 

  15. Golchoobian H, Saedodin S, Ghorbani B. Exergetic and economic evaluation of a novel integrated system for trigeneration of power, refrigeration and freshwater using energy recovery in natural gas pressure reduction stations. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10607-7.

    Article  Google Scholar 

  16. Ghorbani B, Ebrahimi A, Skandarzadeh F, Ziabasharhagh M. Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10158-3.

    Article  Google Scholar 

  17. Niasar MS, Ghorbani B, Amidpour M, Hayati R. Developing a hybrid integrated structure of natural gas conversion to liquid fuels, absorption refrigeration cycle and multi effect desalination (exergy and economic analysis). Energy. 2019;189:116162. https://doi.org/10.1016/j.energy.2019.116162.

    Article  CAS  Google Scholar 

  18. Chang Y-I, Wu L-C, Wu C-C, Jang LK. Computer simulation of an ammonia-water absorption cycle for refrigeration: using a distillation tower to replace the generator. Energy Power Eng. 2020;12(06):237.

    Article  Google Scholar 

  19. Ghorbani B, Shirmohammadi R, Amidpour M, Inzoli F, Rocco M. Design and thermoeconomic analysis of a multi-effect desalination unit equipped with a cryogenic refrigeration system. Energy Convers Manage. 2019;202:112208. https://doi.org/10.1016/j.enconman.2019.112208.

    Article  CAS  Google Scholar 

  20. Aliyon K, Mehrpooya M, Hajinezhad A. Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system. Energy Convers Manage. 2020;211:112752.

    Article  CAS  Google Scholar 

  21. Ghorbani B, Mehrpooya M, Shirmohammadi R, Hamedi MH. A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2018.01.109.

    Article  Google Scholar 

  22. Shirmohammadi R, Soltanieh M, Romeo LM. Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant. Environ Prog Sustain Energy. 2018;37(3):1075–84. https://doi.org/10.1002/ep.12866.

    Article  CAS  Google Scholar 

  23. Ghorbani B, Hamedi M-H, Amidpour M. Exergoeconomic evaluation of an integrated nitrogen rejection unit with LNG and NGL co-production processes based on the MFC and absorbtion refrigeration systems. Gas Process. 2016;4(1):1–28.

    Google Scholar 

  24. Ghorbani B, Shirmohammadi R, Mehrpooya M, Mafi M. Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction. Energy. 2018;149:848–64.

    Article  CAS  Google Scholar 

  25. Shirmohammadi R, Aslani A, Ghasempour R. Challenges of carbon capture technologies deployment in developing countries. Sustain Energy Technol Assess. 2020;42:100837. https://doi.org/10.1016/j.seta.2020.100837.

    Article  Google Scholar 

  26. Bahadori A. Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain. Appl Therm Eng. 2011;31(8):1457–62. https://doi.org/10.1016/j.applthermaleng.2011.01.020.

    Article  CAS  Google Scholar 

  27. Somers CM. Modeling Absorption Chillers in ASPEN. ProQuest; 2009.

  28. Ghorbani B, Shirmohammadi R, Mehrpooya M. A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles—economic and exergy analyses. Appl Thermal Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2017.12.099.

    Article  Google Scholar 

  29. Bejan A. Advanced engineering thermodynamics. Hoboken, New Jersey: Wiley; 2016.

    Book  Google Scholar 

  30. Abdollahpour A, Ghasempour R, Kasaeian A, Ahmadi MH. Exergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink. J Therm Anal Calorim. 2020;139(1):451–73. https://doi.org/10.1007/s10973-019-08375-6.

    Article  CAS  Google Scholar 

  31. Bejan A, Tsatsaronis G, Moran M, Moran MJ. Thermal design and optimization. Wiley; 1996.

    Google Scholar 

  32. Szargut J. Egzergia: poradnik obliczania i stosowania. Wydawnictwo Politechniki Śląskiej; 2007. http://web.mit.edu/2.813/www/readings/APPENDIX.pdf.

  33. Mahmoudan A, Samadof P, Sadeghzadeh M, Jalili M, Sharifpur M, Kumar R. Thermodynamic and exergoeconomic analyses and performance assessment of a new configuration of a combined cooling and power generation system based on ORC–VCR. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10230-y.

    Article  Google Scholar 

  34. Haydary J. Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. Wiley; 2019.

    Google Scholar 

  35. Liu Z, Liu Z, Yang X, Zhai H, Yang X. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system. Energy Convers Manage. 2020;205:112391. https://doi.org/10.1016/j.enconman.2019.112391.

    Article  CAS  Google Scholar 

  36. Charoensuppanimit P, Kitsahawong K, Kim-Lohsoontorn P, Assabumrungrat S. Incorporation of hydrogen by-product from NaOCH3 production for methanol synthesis via CO2 hydrogenation: process analysis and economic evaluation. J Clean Prod. 2019;212:893–909. https://doi.org/10.1016/j.jclepro.2018.12.010.

    Article  CAS  Google Scholar 

  37. Ekrataleshian A, Pourfayaz F, Ahmadi MH. Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10310-z.

    Article  Google Scholar 

  38. Liu Z, He T. Exergoeconomic analysis and optimization of a gas turbine-modular helium reactor with new organic rankine cycle for efficient design and operation. Energy Convers Manage. 2020;204:112311. https://doi.org/10.1016/j.enconman.2019.112311.

    Article  CAS  Google Scholar 

  39. Talebizadehsardari P, Ehyaei MA, Ahmadi A, Jamali DH, Shirmohammadi R, Eyvazian A, et al. Energy, exergy, economic, exergoeconomic, and exergoenvironmental (5E) analyses of a triple cycle with carbon capture. J CO2 Util. 2020;41:101258. https://doi.org/10.1016/j.jcou.2020.101258.

    Article  CAS  Google Scholar 

  40. Wang Y, Liu Y, Liu X, Zhang W, Cui P, Yu M, et al. Advanced exergy and exergoeconomic analyses of a cascade absorption heat transformer for the recovery of low grade waste heat. Energy Convers Manage. 2020;205:112392. https://doi.org/10.1016/j.enconman.2019.112392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding authors would like to acknowledge the Iran's National Elite Foundation (INEF) for the financial support [grant number 15.20772]. The technical supports of the Kermanshah Petrochemical Industries Co. and Shahrekord Carbon Dioxide Co. are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.S.: Conceptualization, Methodology, Software, Formal analysis, Visualization, Writing—Original Draft, Review & Editing. A.A.: Project administration, Supervision, Resources, Review & Editing. R.G.: Project administration, Supervision, Resources, Review & Editing. L.M.R.: Supervision, Conceptualization, Review & Editing. F.P.: Supervision, Methodology, Review & Editing.

Corresponding authors

Correspondence to Reza Shirmohammadi or Alireza Aslani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirmohammadi, R., Aslani, A., Ghasempour, R. et al. Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant. J Therm Anal Calorim 145, 1585–1597 (2021). https://doi.org/10.1007/s10973-021-10833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10833-z

Keywords

Navigation