Skip to main content
Log in

Chip-calorimetric assessment of heat generation during Ca2+ uptake by digitonin-permeabilized Trypanosoma cruzi

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ca2+ signaling in trypanosomatids is an important component of energy metabolism regulation and therefore, cytosolic Ca2+ concentration is finely regulated by Ca2+ transport through the plasma membrane and Ca2+ uptake and release by intracellular organelles. To maintain intracellular Ca2+ homeostasis with different gradients of the ion within the cellular compartments, there is an energy cost and also energy dissipation in the form of heat. Using an innovative segmented fusion technique of a chip-calorimeter and CRISPR/Cas9 knockout (–KO) Trypanosoma cruzi cell lines, we evaluated the heat generation during Ca2+ uptake by digitonin-permeabilized T. cruzi epimastigotes, a system consisting of Ca2+ uptake predominantly by mitochondria and acidocalcisomes. We used three T. cruzi epimastigotes cell lines: control cells denominated scrambled, cells with the absence of the pyruvate dehydrogenase phosphatase (TcPDP-KO) and cells lacking mitochondrial Ca2+ uptake via the mitochondrial calcium uniporter (TcMCU-KO), that presented, in this respective order, decreasing rates and capacities of Ca2+ uptake. TcPDP-KO cells exhibited the lowest heat production following Ca2+ addition, which may be due to its lower mitochondrial oxidative phosphorylation capacity and lower ATP availability for acidocalcisomal Ca2+ uptake. Scrambled and TcMCU-KO cells exhibited similar Ca2+-induced heat effects, which correlates with a higher ATP-dependent acidocalcisomal Ca2+ uptake in these cells. Our results show evidences that mitochondrial Ca2+ transport via the uniporter is minimally heat dissipative, while ATPase pumps in acidocalcisomes possess a predominant contribution to the heat generated during Ca2+ uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benaim G, Garcia CRS. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis—a review. Trop Biomed. 2011;28:471–81.

    PubMed  Google Scholar 

  2. Chiurillo MA, Lander N, Bertolini MS, Storey M, Vercesi AE, Docampo R. Different roles of mitochondrial calcium uniporter complex subunits in growth and infectivity of Trypanosoma cruzi. MBio. 2017;8:1–16.

    Google Scholar 

  3. Lander N, Chiurillo MA, Bertolini MS, Storey M, Vercesi AE, Docampo R. Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of Trypanosoma cruzi. J Biol Chem. 2018;293:17402–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang G, Vercesi AE, Docampo R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat Commun. 2013;4:2865.

    PubMed  Google Scholar 

  5. Bertolini MS, Chiurillo MA, Lander N, Vercesi AE, Docampo R. MICU1 and MICU2 play an essential role in mitochondrial Ca2+ uptake, growth, and infectivity of the human pathogen Trypanosoma cruzi. MBio. 2019;10:e00348.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391–425.

    CAS  PubMed  Google Scholar 

  7. Carafoli E. The fateful encounter of mitochondria with calcium: How did it happen? Biochim Biophys Acta. 2010;1797:595–606.

    CAS  PubMed  Google Scholar 

  8. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    CAS  PubMed  Google Scholar 

  9. Lander N, Chiurillo MA, Bertolini MS, Docampo R, Vercesi AE. The mitochondrial calcium uniporter complex in trypanosomes. Cell Biol Int. 2018;42:656–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476:341–5. https://doi.org/10.1038/nature10234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature. 2010;467:291–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Engström I, Waldenström A, Nilsson-Ehle P, Ronquist G. Dissipation of the calcium gradient in human erythrocytes results in increased heat production. Clin Chim Acta. 1993;219:113–22.

    PubMed  Google Scholar 

  13. Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta Bioenergy. 2009;1787:1309–16. https://doi.org/10.1016/j.bbabio.2009.01.005.

    Article  CAS  Google Scholar 

  14. Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 2012;51:2959–73.

    CAS  PubMed  Google Scholar 

  15. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.

    CAS  PubMed  Google Scholar 

  16. Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med. 2018;129:1–24.

    CAS  PubMed  Google Scholar 

  17. Vercesi AE, Moreno SNJ, Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994;304:227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ. Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol. 2005;3:251–61.

    CAS  PubMed  Google Scholar 

  19. Lander N, Cordeiro C, Huang G, Docampo R. Polyphosphate and acidocalcisomes. Biochem Soc Trans. 2016;44:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol. 2016;209:3–9.

    CAS  PubMed  Google Scholar 

  21. Huang G, Bartlett PJ, Thomas AP, Moreno SNJ, Docampo R. Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci USA. 2013;110:1887–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 2016;291:25505–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Docampo R, Moreno SNJ. The acidocalcisome. Mol Biochem Parasitol. 2001;114:151–9.

    CAS  PubMed  Google Scholar 

  24. Moreno SN, Silva J, Vercesi AE, Docampo R. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med. 1994;180:1535–40.

    CAS  PubMed  Google Scholar 

  25. Chiurillo MA, Lander N, Vercesi AE, Docampo R. IP3 receptor-mediated Ca2+ release from acidocalcisomes regulates mitochondrial bioenergetics and prevents autophagy in Trypanosoma cruzi. Cell Calcium. 2020;92:102284. https://doi.org/10.1016/j.ceca.2020.102284.

    Article  CAS  PubMed  Google Scholar 

  26. Ulrich P, Cintrón R, Docampo R. Calcium homeostasis and acidocalcisomes in Trypanosoma cruzi. In: de Souza W, editor. Struct organelles pathog protists. Berlin, Heidelberg: Springer; 2010. p. 299–318. https://doi.org/10.1007/978-3-642-12863-9_13.

    Chapter  Google Scholar 

  27. Ramakrishnan S, Docampo R. Membrane proteins in trypanosomatids involved in Ca2+ homeostasis and signaling. Genes (Basel). 2018;9:1–18.

    Google Scholar 

  28. Dejean L, Beauvoit B, Bunoust O, Fleury C, Guérin B, Rigoulet M. The calorimetric-respirometric ratio is an on-line marker of enthalpy efficiency of yeast cells growing on a non-fermentable carbon source. Biochim Biophys Acta Bioenergy. 2001;1503:329–40.

    CAS  Google Scholar 

  29. Lerchner J, Sartori MR, Volpe POL, Lander N, Mertens F, Vercesi AE. Direct determination of anaerobe contributions to the energy metabolism of Trypanosoma cruzi by chip calorimetry. Anal Bioanal Chem. 2019;411:3763–8.

    CAS  PubMed  Google Scholar 

  30. Lerchner J, Maskow T, Wolf G. Chip calorimetry and its use for biochemical and cell biological investigations. Chem Eng Process Process Intensif. 2008;47:991–9.

    CAS  Google Scholar 

  31. Hansen LD, Macfarlane C, McKinnon N, Smith BN, Criddle RS. Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochim Acta. 2004;422:55–61.

    CAS  Google Scholar 

  32. Minibayeva FV, Gordon LK, Alyabyev AJ, Rakhmatullina DF, Loseva NL. Heat production of root cells upon the dissipation of ion gradients on plasma membrane. Thermochim Acta. 1998;309:139–43.

    CAS  Google Scholar 

  33. Lerchner J, Sartori MR, Volpe PO, Förster S, Mazik M, Vercesi AE, et al. Segment fusion chip calorimetry: a new method for the investigation of fast reactions. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10623-7.

    Article  Google Scholar 

  34. Boné GJ, Steinert M. Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature. 1956;178:308–9. https://doi.org/10.1038/178308a0.

    Article  PubMed  Google Scholar 

  35. Wolf A, Hartmann T, Bertolini M, Schemberg J, Grodrian A, Lemke K, et al. Toward high-throughput chip calorimetry by use of segmented-flow technology. Thermochim Acta. 2015;603:172–83.

    CAS  Google Scholar 

  36. Vercesi AE, Hoffmann ME, Bernardes CF, Docampo R. Regulation of intracellular calcium homeostasis in Trypanosoma cruzi. Effects of calmidazolium and trifluoperazine. Cell Calcium. 1991;12:361–9.

    CAS  PubMed  Google Scholar 

  37. Moreno SNJ, Docampo R. The role of acidocalcisomes in parasitic protists. J Eukaryot Microbiol. 2009;56:208–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009;89:1341–78.

    CAS  PubMed  Google Scholar 

  39. De Meis L. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production. An Acad Bras Cienc. 2000;72:365–79.

    CAS  PubMed  Google Scholar 

  40. Inesi G, De Meis L. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem. 1989;264:5929–36.

    CAS  PubMed  Google Scholar 

  41. De Meis L. Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase: regulation by ADP. J Biol Chem. 2001;276:25078–87.

    PubMed  Google Scholar 

  42. Kjelstrup S, Miguel Rubi J, Bedeaux D. Energy dissipation in slipping biological pumps. Phys Chem Chem Phys. 2005;7:4009–18. https://doi.org/10.1039/B511990A.

    Article  CAS  PubMed  Google Scholar 

  43. Hou Y, Kitaguchi T, Kriszt R, Tseng YH, Raghunath M, Suzuki M. Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation. Mol Metab. 2017;6:797–808. https://doi.org/10.1016/j.molmet.2017.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inesi G, Tadini-Buoninsegni F. Ca2+/H+ exchange, lumenal Ca2+ release and Ca2+/ATP coupling ratios in the sarcoplasmic reticulum ATPase. J Cell Commun Signal. 2014;8:5–11.

    PubMed  Google Scholar 

  45. Xie Y, Coukell MB, Gombos Z. Antisense RNA inhibition of the putative vacuolar H+-ATPase proteolipid of Dictyostelium reduces intracellular Ca2+ transport and cell viability. J Cell Sci. 1996;109:489–97.

    CAS  PubMed  Google Scholar 

  46. Scott DA, Docampo R. Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. Biochem J. 1998;331(Pt 2):583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawasaki-Nishi S, Nishi T, Forgac M. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem. 2001;276:17941–8.

    CAS  PubMed  Google Scholar 

  48. Chan CY, Prudom C, Raines SM, Charkhzarrin S, Melman SD, De Haro LP, et al. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V 0 subunit a (Vph1p). J Biol Chem. 2012;287:10236–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Arai H, Pink S, Forgac M. Interaction of anions and ATP with the coated vesicle proton pump. Biochemistry. 1989;28:3075–82.

    CAS  PubMed  Google Scholar 

  50. Ramakrishnan S, Asady B, Docampo R. Acidocalcisome-mitochondrion membrane contact sites in Trypanosoma brucei. Pathogens. 2018;7:1–11.

    CAS  Google Scholar 

  51. De Stefani D, Rizzuto R, Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. 2016;85:161–92.

    PubMed  Google Scholar 

  52. Bassani BYJWM, Bassani RA, Bers DM. Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes. J Physiol. 1993;460:603–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiong ZH, Ridgley EL, Enis D, Olness F, Ruben L. Selective transfer of calcium from an acidic compartment to the mitochondrion of Trypanosoma brucei. Measurements with targeted aequorins. J Biol Chem. 1997;272:31022–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP) visiting researcher Grant No. 2018/19976-1 to JL/AEV and FAEPEX Grant No. 519.292 to JL; FAPESP Grant No. 2017/17728-8 to AEV/RFC; and FAPESP postdoctoral fellowship to MRS/AEV (2017/05487-6).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MRS and JL. The first draft of the manuscript was written by MRS and JL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marina Rincon Sartori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartori, M.R., Lerchner, J., Castilho, R.F. et al. Chip-calorimetric assessment of heat generation during Ca2+ uptake by digitonin-permeabilized Trypanosoma cruzi. J Therm Anal Calorim 147, 4611–4619 (2022). https://doi.org/10.1007/s10973-021-10862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10862-8

Keywords

Navigation