Skip to main content
Log in

Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Various nanofluids (NFs) have been prepared using nanoparticles (NPs) for dual fuel engine application in this present work. In the initial segment of the work, the NF’s are prepared using aluminum oxide nanoparticles (Al2O3). Further, nanoparticles were blended with diary scum oil methyl ester (DiSOME) in the mass fraction of 10–30 ppm in steps of 10, with the assistance of a mechanically operated conventional homogenizer and an ultrasonicator. In the next segment of the work, Al2O3 NP’s effect on the characteristics of ignition and engine outgas levels of a single cylinder four strokes direct injection diesel engine functioning on dual fuel mode using DiSOME and producer gas (PG) has been investigated. Engine testing showed that experiments with Al2O3 based NF and PG operation resulted in 11.5% amplified brake thermal efficiency, 23.2% reduction in smoke, 18.2–21.4% reduction in hydrocarbon (HC) and carbon monoxide (CO) emissions, while more significant nitric oxide (NOx) levels by 32.6% were achieved than the same fuel combination excluded NP’s at 80% load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akkoli KM, Banapurmath NR, Shivashimpi MM, Soudagar MEM, Badruddin IA, Alazwari MA, et al. Effect of injection parameters and producer gas derived from redgram stalk on the performance and emission characteristics of a diesel engine. Alex Eng J. 2021;60(3):3133–42. https://doi.org/10.1016/j.aej.2021.01.047.

    Article  Google Scholar 

  2. Harari P, Banapurmath N, Yaliwal V, Khan TY, Soudagar MEM, Sajjan A. Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel. Renew Energy. 2020;160:865–75.

    Article  CAS  Google Scholar 

  3. Venu H, Raju VD, Lingesan S, Soudagar MEM. Influence of Al2O3 nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: performance, combustion and emission characteristics. Energy. 2020;215:119091.

    Article  CAS  Google Scholar 

  4. Bala Prasad K, Meduri O, Dhana Raju V, Azmeera AK, Venu H, Subramani L, et al. Effect of split fuel injection strategies on the diverse characteristics of CRDI diesel engine operated with tamarind biodiesel. Energy Sources Part A Recover Util Environ Effects. 2020;42:1–19.

    Google Scholar 

  5. Rahmanian B, Safaei MR, Kazi SN, Ahmadi G, Oztop HF, Vafai K. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Appl Therm Eng. 2014;73(1):1222–35.

    Article  CAS  Google Scholar 

  6. Yaliwal V, Banapurmath N, Gireesh N, Tewari P. Production and utilization of renewable and sustainable gaseous fuel for power generation applications: a review of literature. Renew Sustain Energy Rev. 2014;34:608–27.

    Article  CAS  Google Scholar 

  7. Chowdhury H, Barua P, Chowdhury T, Hossain N, Islam R, Sait SM, et al. Synthesis of biodiesel from chicken skin waste: an economic and environmental biofuel feedstock in Bangladesh. Environ Sci Pollut Res. 2021;12:1–10.

    Google Scholar 

  8. Soudagar MEM, Mujtaba M, Safaei MR, Afzal A, Ahmed W, Banapurmath N, et al. Effect of Sr@ ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy. 2020;215:119094. https://doi.org/10.1016/j.energy.2020.119094.

    Article  CAS  Google Scholar 

  9. Barua P, Hossain N, Chowdhury T, Chowdhury H. Commercial diesel application scenario and potential of alternative biodiesel from waste chicken skin in Bangladesh. Environ Technol Innov. 2020;20:101139.

    Article  CAS  Google Scholar 

  10. Barua P, Chowdhury T, Chowdhury H, Islam R, Hossain N. Potential of power generation from chicken waste-based biodiesel, economic and environmental analysis: Bangladesh’s perspective. SN Appl Sci. 2020;2(3):1–9.

    Article  CAS  Google Scholar 

  11. Nakatani K, Hirota S, Takeshima S, Itoh K, Tanaka T, Dohmae K. Simultaneous PM and NOx reduction system for diesel engines. SAE Trans. 2002;111:362–9.

    Google Scholar 

  12. Jayat F, Reck A, Babu K. SCR and SCRi® as After-treatment Systems for Low CO2 and Low NOx Vehicles: SAE Technical Paper2011. Report No.: 0148-7191. https://doi.org/10.4271/2011-26-0038.

  13. Noor CM, Noor M, Mamat R. Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew Sustain Energy Rev. 2018;94:127–42.

    Article  CAS  Google Scholar 

  14. Hossain N, Mahlia T, Saidur R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels. 2019;12(1):1–16.

    Article  Google Scholar 

  15. Harari PA, Banapurmath NR, Yaliwal VS, Soudagar MEM, Khan TMY, Mujtaba MA, et al. Experimental investigation on compression ignition engine powered with pentanol and thevetia peruviana methyl ester under reactivity controlled compression ignition mode of operation. Case Stud Therm Eng. 2021;25:100921. https://doi.org/10.1016/j.csite.2021.100921.

    Article  Google Scholar 

  16. Baloch A, Mazari SA, Hossain N, Takkalkar P, Jatoi AS, Nizamuddin S, et al. Application of microwave synthesis in biodiesel production. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier; 2021. pp. 623–41. https://doi.org/10.1016/B978-0-12-819848-3.00014-1.

  17. Banapurmath N, Yaliwal V, Kambalimath S, Hunashyal A, Tewari P. Effect of wood type and carburetor on the performance of producer gas-biodiesel operated dual fuel engines. Waste Biomass Valoriz. 2011;2(4):403.

    Article  CAS  Google Scholar 

  18. Yusof SNA, Sidik NAC, Asako Y, Japar WMAA, Mohamed SB, Muhammad NMA. A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol Rev. 2020;9(1):1326–49.

    Article  CAS  Google Scholar 

  19. Boddula R, Asiri AM. Green sustainable process for chemical and environmental engineering and science: microwaves in organic synthesis. Elsevier; 2020.

  20. Marikatti M, Banapurmath N, Yaliwal V, Basavarajappa Y, Soudagar MEM, Márquez FPG, et al. Hydrogen injection in a dual fuel engine fueled with low-pressure injection of methyl ester of thevetia peruviana (METP) for diesel engine maintenance application. Energies. 2020;13(21):5663.

    Article  CAS  Google Scholar 

  21. Sivakumar P, Anbarasu K, Renganathan S. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum. Fuel. 2011;90(1):147–51.

    Article  CAS  Google Scholar 

  22. Soudagar MEM, Nik-Ghazali N-N, Kalam M, Badruddin IA, Banapurmath N, Khan TY, et al. The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: performance, emission and combustion characteristics. Fuel. 2019;257:116015.

    Article  CAS  Google Scholar 

  23. Kavitha V, Geetha V, Jacqueline PJ. Production of biodiesel from dairy waste scum using eggshell waste. Process Saf Environ Prot. 2019;125:279–87.

    Article  CAS  Google Scholar 

  24. Channappagoudra M. Comparative study of baseline and modified engine performance operated with dairy scum biodiesel and bio-CNG. Renew Energy. 2020;151:604–18.

    Article  CAS  Google Scholar 

  25. Sankar V, Ramachandran M, Thampi G, Jayaraj M. Combined effects of thermal barrier coating and blending of diesel fuel with biodiesel in diesel engines. Mater Today Proc. 2019;11:903–11.

    Article  CAS  Google Scholar 

  26. Premnath S, Devaradjane G. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters. Ecotoxicol Environ Saf. 2015;121:10–5.

    Article  CAS  PubMed  Google Scholar 

  27. Srikanth H, Venkatesh J, Sharanappa G. Experimental Investigations On Performance And Emissions of a CI engine fuelled with milk dairy waste scum oil biodiesel. J Biofuels. 2015;6(1):27–37.

    Article  Google Scholar 

  28. Jiaqiang E, Zhao X, Qiu L, Wei K, Zhang Z, Deng Y, et al. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers Manag. 2019;193:149–61.

    Article  Google Scholar 

  29. Soudagar MEM, Banapurmath N, Afzal A, Hossain N, Abbas MM, Haniffa MACM, et al. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci Rep. 2020;10(1):1–17.

    Article  CAS  Google Scholar 

  30. Agarwal AK, Dhar A, Gupta JG, Kim WI, Choi K, Lee CS, et al. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Convers Manag. 2015;91:302–14.

    Article  CAS  Google Scholar 

  31. Soudagar MEM, Afzal A, Safaei MR, Manokar AM, EL-Seesy AI, Mujtaba M, et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J Therm Anal Calorim. 2020:1–18. https://doi.org/10.1007/s10973-020-10293-x.

  32. Soudagar MEM, Nik-Ghazali N-N, Kalam M, Badruddin IA, Banapurmath N, Ali MAB, et al. An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics. Renew Energy. 2020;146:2291–307.

    Article  CAS  Google Scholar 

  33. Perumal V, Ilangkumaran M. The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel. 2018;232:791–802.

    Article  CAS  Google Scholar 

  34. Ghanbari M, Najafi G, Ghobadian B, Yusaf T, Carlucci A, Kiani MKD. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel. 2017;202:699–716.

    Article  CAS  Google Scholar 

  35. Venu H, Raju VD, Subramani L. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy. 2019;174:386–406.

    Article  CAS  Google Scholar 

  36. Soudagar MEM, Nik-Ghazali N-N, Kalam MA, Badruddin I, Banapurmath N, Akram N. The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics. Energy Convers Manag. 2018;178:146–77.

    Article  CAS  Google Scholar 

  37. Khan H, Kareemullah M, Ravi HC, Rehman KF, Kumar RH, Afzal A, et al. Combined effect of synthesized waste milk scum oil methyl ester and ethanol fuel blend on the diesel engine characteristics. J Inst Eng (India) Ser C. 2020;101(6):947–62. https://doi.org/10.1007/s40032-020-00605-3.

    Article  Google Scholar 

  38. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139(4):2585–99. https://doi.org/10.1007/s10973-019-08762-z.

    Article  CAS  Google Scholar 

  39. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AA, Shabani GAS, et al. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29(2):273–82.

    Article  CAS  Google Scholar 

  40. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, et al. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Methods Heat Fluid Flow. 2019;30:2683–704. https://doi.org/10.1108/HFF-02-2019-0150.

    Article  Google Scholar 

  41. Bagherzadeh SA, D’Orazio A, Karimipour A, Goodarzi M, Bach Q-V. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: outputs predicted analytically instead of numerically to more accuracy and less costs. Phys A. 2019;521:406–15. https://doi.org/10.1016/j.physa.2019.01.048.

    Article  CAS  Google Scholar 

  42. Mirzajanzadeh M, Tabatabaei M, Ardjmand M, Rashidi A, Ghobadian B, Barkhi M, et al. A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel. 2015;139:374–82.

    Article  CAS  Google Scholar 

  43. Liu J, Wang J, Zhao H. Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine. Energy. 2018;164:837–52.

    Article  CAS  Google Scholar 

  44. Hasannuddin A, Yahya W, Sarah S, Ithnin A, Syahrullail S, Sidik N, et al. Nano-additives incorporated water in diesel emulsion fuel: fuel properties, performance and emission characteristics assessment. Energy Convers Manag. 2018;169:291–314.

    Article  CAS  Google Scholar 

  45. Khond VW, Kriplani V. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renew Sustain Energy Rev. 2016;59:1338–48.

    Article  CAS  Google Scholar 

  46. Basha JS, Anand R. An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. Int J Green Energy. 2011;8(3):332–48.

    Article  CAS  Google Scholar 

  47. Yaliwal V, Banapurmath N, Gireesh N, Hosmath R, Donateo T, Tewari P. Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels. Renew Energy. 2016;93:483–501.

    Article  CAS  Google Scholar 

  48. Roy MM, Tomita E, Kawahara N, Harada Y, Sakane A. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas. Int J Hydrog Energy. 2009;34(23):9628–38.

    Article  CAS  Google Scholar 

  49. Dhole A, Yarasu R, Lata D, Priyam A. Effect on performance and emissions of a dual fuel diesel engine using hydrogen and producer gas as secondary fuels. Int J Hydrog Energy. 2014;39(15):8087–97.

    Article  CAS  Google Scholar 

  50. Halewadimath S, Yaliwal V, Banapurmath N, Sajjan A. Influence of hydrogen enriched producer gas (HPG) on the combustion characteristics of a CRDI diesel engine operated on dual-fuel mode using renewable and sustainable fuels. Fuel. 2020;270:117575.

    Article  CAS  Google Scholar 

  51. Jiang Y, Bahrami M, Bagherzadeh SA, Abdollahi A, Sulgani MT, Karimipour A, et al. Propose a new approach of fuzzy lookup table method to predict Al2O3/deionized water nanofluid thermal conductivity based on achieved empirical data. Phys A Stat Mech Appl. 2019;527:121177. https://doi.org/10.1016/j.physa.2019.121177.

    Article  CAS  Google Scholar 

  52. Karthikeyan S, Elango A, Silaimani S, Prathima A. Role of Al2O3 nano additive in GSOBiodiesel on the working characteristics of a CI engine. Indian J Chem Technol. 2014;21:285–9.

    Google Scholar 

  53. Peng Y, Parsian A, Khodadadi H, Akbari M, Ghani K, Goodarzi M, et al. Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3–Cu nanoparticles dispersed in ethylene glycol. Phys Stat Mech Appl. 2020;549:124015. https://doi.org/10.1016/j.physa.2019.124015.

    Article  CAS  Google Scholar 

  54. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2021;143(6):4149–67. https://doi.org/10.1007/s10973-020-09372-w.

    Article  CAS  Google Scholar 

  55. Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11(8):630–49.

    Article  CAS  Google Scholar 

  56. Saxena V, Kumar N, Saxena VK. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew Sustain Energy Rev. 2017;70:563–88.

    Article  CAS  Google Scholar 

  57. Li Z, Sarafraz M, Mazinani A, Hayat T, Alsulami H, Goodarzi M. Pool boiling heat transfer to CuO–H2O nanofluid on finned surfaces. Int J Heat Mass Transf. 2020;156:119780.

    Article  CAS  Google Scholar 

  58. Akkoli K, Gangavati P, Banapurmath N, Yaliwal V. Comparative study of various biofuel combinations derived from agricultural residues on the performance and emissions of CI engine. Int J Sustain Eng. 2020;13(2):140–50.

    Article  Google Scholar 

  59. Banapurmath N, Yaliwal V, Adaganti S, Halewadimath SS. Power generation from renewable energy sources derived from biodiesel and low energy content producer gas for rural electrification. In: Energy from toxic organic waste for heat and power generation. Elsevier; 2019. pp. 151–94.

  60. Banapurmath N, Tewari P, Yaliwal V, Kambalimath S, Basavarajappa Y. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction. Renew Energy. 2009;34(7):1877–84.

    Article  CAS  Google Scholar 

  61. Metwally NH, Saad GR, Abd El-Wahab EA. Grafting of multiwalled carbon nanotubes with pyrazole derivatives: characterization, antimicrobial activity and molecular docking study. Int J Nanomed. 2019;14:6645.

    Article  CAS  Google Scholar 

  62. Saxena V, Kumar N, Saxena VK. Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: experimental assessment and modeling. Appl Energy. 2019;248:330–53.

    Article  CAS  Google Scholar 

  63. Razzaq L, Mujtaba M, Soudagar MEM, Ahmed W, Fayaz H, Bashir S, et al. Engine performance and emission characteristics of palm biodiesel blends with graphene oxide nanoplatelets and dimethyl carbonate additives. J Environ Manag. 2021;282:111917.

    Article  CAS  Google Scholar 

  64. Gavhane RS, Kate AM, Pawar A, Soudagar MEM, Fayaz H. Effect of soybean biodiesel and copper coated zinc oxide nanoparticles on enhancement of diesel engine characteristics. Energy Sources Part A Recov Util Environ Effects. 2020. https://doi.org/10.1080/15567036.2020.1856237.

    Article  Google Scholar 

  65. Fayaz H, Mujtaba MA, Soudagar MEM, Razzaq L, Nawaz S, Nawaz MA, et al. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel. 2021;293:120420. https://doi.org/10.1016/j.fuel.2021.120420.

    Article  CAS  Google Scholar 

  66. Gavhane R, Kate A, Soudagar MEM, Wakchaure V, Balgude S, Rizwanul Fattah I, et al. Influence of silica nano-additives on performance and emission characteristics of Soybean biodiesel fuelled diesel engine. Energies. 2021;14(5):1489.

    Article  CAS  Google Scholar 

  67. Gavhane RS, Kate AM, Pawar A, Safaei MR, Soudagar ME, Mujtaba Abbas M, et al. Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry. 2020;12(6):1042.

    Article  CAS  Google Scholar 

  68. Khan H, Soudagar MEM, Kumar RH, Safaei MR, Farooq M, Khidmatgar A, et al. Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel—nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry. 2020;12(6):961.

    Article  CAS  Google Scholar 

  69. Hoseini S, Najafi G, Ghobadian B, Ebadi M, Mamat R, Yusaf T. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renew Energy. 2020;145:458–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University researchers supporting project number (TURSP–2020/40), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sateesh, K.A., Yaliwal, V.S., Soudagar, M.E.M. et al. Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. J Therm Anal Calorim 147, 5897–5911 (2022). https://doi.org/10.1007/s10973-021-10928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10928-7

Keywords

Navigation