Skip to main content

Advertisement

Log in

Drones for butterfly conservation: larval habitat assessment with an unmanned aerial vehicle

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Evidence-based nature conservation focuses on ecological facts and the incorporation of knowledge on the ecology of species, including its entire life cycle. In butterflies, imagos and its larvae often demand specific and diverging micro-habitat structures and resources. In consequence, ecological requirements of the imaginal and pre-imaginal stage have to be taken into consideration to conduct effective conservation management.

Objective

Here we analyse ecological pre-requisites of imagos and larvae for two lycaenid butterfly species, the common blue Polyommatus icarus and the adonis blue Polyommatus bellargus. Both butterfly species occur in calcareous grasslands and mainly depend on two plant species at our study site, the horseshoe vetch Hippocrepis comosa and bird’s-foot trefoil Lotus corniculatus. These plant species serve as nectar sources and larval host plants for the two butterfly species.

Methods

First, we assessed the occurrence of imagines and larvae of the two butterfly species and recorded various micro-habitat characteristics, like the number of flower buds of the two main host plants, the surrounding vegetation height, percentage of bare soil, availability of shadow, and the distance to and geographic direction of thickets at respective sites. In a second step we took high resolution aerial pictures from our study area using an unmanned aerial vehicle (drone). Based on these aerial pictures and the information on the larvae´s habitat preference from our field observations, we trained a habitat suitability model to identify micro-habitat structures suitable for larvae of the two butterfly species.

Results

We found that abundance of imagos is positively correlated with flower bud density of the two host plants. Low vegetation height and high proportion of bare soil (but not flower bud density) positively influence egg oviposition. The calculated habitat suitability models predict the occurrence of high quality larval habitats with high prediction power (AUC = 0.72).

Conclusions

This combined data set consisting of field observations, high resolution aerial pictures taken from an unmanned aerial vehicle, and models underline that (1) species with complex life cycles may request more than one habitat niche, depending its stage of development, and (2) high resolution aerial pictures taken from drones provide valuable background data to generate habitat suitability models—even on a micro scale but covering larger parts of a landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson K, Gaston KJ (2013) Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front Ecol Environ 11:138–146

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anthes N, Fartmann T, Hermann G (2008) The Duke of Burgundy butterfly and its dukedom. larval niche variation in Hamearis lucina across Central Europe. J Insect Conserv 12:3–14

    Article  Google Scholar 

  • Arts K, van der Wal R, Adams WM (2015) Digital technology and the conservation of nature. Ambio 44:661–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Autengruber H, Denic M, Klein T (2007) Kalkmagerrasenrelikte der Dietersheimer Brenne. Zustand, Gefährdung, Pflege und Nutzungskonflikte. Großpraktikum am Institut für Landschaftspflege und Botanik (TU München), Freising

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, Haarlem

    Google Scholar 

  • Bolz R, Geyer A (2003) Rote Liste gefährdeter Tagfalter (Lepidotpera: Rhopalocera) Bayerns

  • Bräu M, Dolek M, Stettmer C (2010) Habitat requirements, larval development and food preferences of the German population of the False Ringlet Coenonympha oedippus (Fabricius, 1787) (Lepidoptera: Nymphalidae). Research on the ecological needs to develop management tools. Oedippus 26:41–51

    Google Scholar 

  • Chabot D, Bird DM (2013) Small unmanned aircraft. Precise and convenient new tools for surveying wetlands. J Unmanned Veh Syst 1:15–24

    Article  Google Scholar 

  • Chabot D, Bird DM (2015) Wildlife research and management methods in the 21st century. Where do unmanned aircraft fit in? J Unmanned Veh Syst 3:137–155

    Article  Google Scholar 

  • Clark KE, Hartley SE, Johnson SN (2011) Does mother know best? The preference–performance hypothesis and parent–offspring conflict in aboveground–belowground herbivore life cycles. Ecol Entomol 36:117–124

    Article  Google Scholar 

  • Cord A, Rödder D (2011) Inclusion of habitat availability in species distribution models through multi-temporal remote sensing data? Ecol Appl 21:3285–3298

    Article  Google Scholar 

  • Dennis RL, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • Dolek M (2006) Die Bedeutung der Larvalökologie bei Artenschutzprojekten. In: Fartmann T, Hermann G (eds) Larvalökologie: Von Tagfaltern und Widderchen in Mitteleuropa—Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 271–280

  • Dolek M, Geyer A (2000) Anwendung im Naturschutz: Fang-Wiederfang-Studien in Kombination mit anderen Methoden am Apollofalter (Parnassius apollo L.). Beiträge zur Ökologie 4:145–156

    Google Scholar 

  • Fartmann T (2006) Welche Rolle spielen Störungen für Tagfalter und Widderchen? In: Fartmann T, Hermann G (eds) Larvalökologie: Von Tagfaltern und Widderchen in Mitteleuropa—Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 259–270

  • Fartmann T, Hermann G (eds) (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkde, Münster, 11–57

  • Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9:388–397

    Article  Google Scholar 

  • Garciá-Barros E, Fartmann T (2009) Butterfly oviposition, sites, behaviour and modes. In: Settele J, Konvicka M, Shreeve TG, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  • Garmin (2016) https://support.garmin.com/support/searchSupport/case.faces?caseId={0995adc0-7001-11e4-d90c-000000000000}. Accessed 1 June 2016

  • Goverde M, Bazin A, Kéry M, Shykoff JA, Erhardt A (2008) Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly. Oecologia 157:409–418

    Article  PubMed  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect genetic diversity of Lycaena helle populations. Global Change Biol 17:194–205

    Article  Google Scholar 

  • Habel JC, Török P, Dengler J, Janišová M, Wiezik M, Stork N, Wellstein C (2013) European grasslands: a threatened ecosystem biodiversity hotspot. Biodivers Conserv 22:2131–2138

    Article  Google Scholar 

  • Hafner S (2006) Einfluss der Bewirtschaftung auf die Besiedlung von Habitaten durch die Flockenblumen-Grünwidderchen Jordanita globulariae und J. notata. In: Fartmann T, Hermann G (eds) Larvalökologie: Von Tagfaltern und Widderchen in Mitteleuropa—Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 309–322

  • He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M-N, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv 1:4–18

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2015) dismo: Species distribution modeling. R package version 1.0-12. http://CRAN.R-project.org/package=dismo

  • Janz N, Bergström A, Sjörgen A (2005) The role of nectar sources for oviposition decisions of the common blue butterfly Polyommatus icarus. Oikos 109:535–538

    Article  Google Scholar 

  • Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly, a trade-off between microclimate and food availability. J Insect Conserv 16:857–865

    Article  Google Scholar 

  • Landesamt für Umwelt Bayern LfU (2015) http://www.lfu.bayern.de/natur/rote_liste_tiere_daten/doc/tiere/rhopalocera.pdf Accessed 4 Dec 2015

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Liu Z, Scheirs J, Heckel DG (2010) Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore. Environ Entomol 39:552–560

    Article  PubMed  Google Scholar 

  • Loritz H, Settele J (2006) Eiablageverhalten des Großen Feuerfalters (Lycaena dispar) in SW-Deutschland. Wirtspflanzenwahl, Generationenvergleich und Hinweise zur Erfassung. In: Fartmann T, Hermann G (eds,) Larvalökologie: Von Tagfaltern und Widderchen in Mitteleuropa—Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 243–255

  • Luo C, Li X, Dai Q (2014) Biology’s drones: new and improved. Science 344:1351

    Article  CAS  PubMed  Google Scholar 

  • Maffey G, Homans H, Banks K, Arts K (2015) Digital technology and human development: a charter for nature conservation. Ambio 44:527–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RR (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Porter K (1992) Eggs and egg-laying. In: Dennis RL (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72

    Google Scholar 

  • Quesnelle PE, Lindsay KE, Fahrig L (2015) Relative effects of landscape-scale wetland amount and landscape matrix quality on wetland vertebrates: a meta-analysis. Ecol Appl 25:812–825

    Article  PubMed  Google Scholar 

  • Rausher MD (1979) Larval habitat suitability and oviposition preference in three related butterflies. Ecology 60:503–511

    Article  Google Scholar 

  • Reinhardt R, Feldmann R, Herrmann G, Settele J, Steiner R (2009) Schmetterlinge: Die Tagfalter Deutschlands, Ulmer Verlag

  • Renwick JA, Chew FS (1994) Oviposition behaviour in lepidoptera. Ann Rev Entomol 39:377–400

    Article  Google Scholar 

  • Schiffman R (2014) Wildlife conservation. Drones flying high as new tool for field biologists. Science 344:459

    Article  CAS  PubMed  Google Scholar 

  • Soininen J, Bartels P, Heino J, Luoto M, Hillebrand H (2015) Toward more integrated ecosystem research in aquatic and terrestrial environments. Bioscience 65:174–182

    Article  Google Scholar 

  • Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308

    Article  PubMed  Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Simcox DJ, Hovestadt T (2011) Evidence based conservation of butterflies. J Insect Conserv 15:241–258

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2013) biomod2: Ensemble platform for species distribution modeling. R package version 2.7, r560

  • Tolman T, Lewington R (1997) Butterflies of Britain and Europe. Princeton University Press, Princeton

    Google Scholar 

  • Trautner J (2006) Naturschutzfachliche Bewertungsragen in der Praxis—Welche Rolle spielen Daten zu Art-Präsenz und Ausprägung spezifischer Larvalhabitate von Tagfaltern und Widderchen? In: Fartmann T, Hermann G (eds) Larvalökologie: Von Tagfaltern und Widderchen in Mitteleuropa—Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 295–308

  • Wallis De Vries, M (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in northwestern Europe, In: Fartmann T, Hermann G (eds) Larvalökologie. Von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde. Nr. 68. Landschaftsverband Westfalen-Lippe, Münster, 281–294

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas Editha. Ecology 69:1486–1496

    Article  Google Scholar 

  • Wich S, Koh LP (2012) Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci 5:121–132

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sabrina Behrendt, Christine Hammel, Stefanie Künstle, Verena Smieskol and Simone Zimmermann for data collection in the field. We thank two anonymous referees for fruitful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Christian Habel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habel, J.C., Teucher, M., Ulrich, W. et al. Drones for butterfly conservation: larval habitat assessment with an unmanned aerial vehicle. Landscape Ecol 31, 2385–2395 (2016). https://doi.org/10.1007/s10980-016-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0409-3

Keywords

Navigation