Skip to main content

Advertisement

Log in

Bayesian dynamic models for survival data with a cure fraction

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In this paper, we propose a new class of semi-parametric cure rate models. Specifically, we construct dynamic models for piecewise hazard functions over a finite partition of the time axis. Allowing the size of partition and the levels of baseline hazard to be random, our proposed models provide a great flexibility in controlling the degree of parametricity in the right tail of the survival distribution and the amount of correlations among the log-baseline hazard levels. Several properties of the proposed models are derived, and propriety of the implied posteriors with improper noninformative priors for regression coefficients based on the proposed models is established for the fixed partition of the time axis. In addition, an efficient reversible jump computational algorithm is developed for carrying out posterior computation. A real data set from a melanoma clinical trial is analyzed in detail to further demonstrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arjas E, Gasbarra D (1994) Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler. Stat Sinica 4:505–524

    MATH  MathSciNet  Google Scholar 

  • Aslanidou H, Dey DK, Sinha D (1998) Bayesian analysis of multivariate survival data using Monte Carlo methods. Canad J Stat 26:33–48

    Article  MATH  MathSciNet  Google Scholar 

  • Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515

    Article  Google Scholar 

  • Chen MH, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919

    Article  MATH  MathSciNet  Google Scholar 

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comp Graph Stat 8:69–92

    Article  MathSciNet  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904

    Article  MATH  MathSciNet  Google Scholar 

  • Gamerman D (1991) Dynamic Bayesian models for survival data. Appl Stat 40:63–79

    Article  MATH  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  MATH  MathSciNet  Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41:337–348

    Article  MATH  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2001a) Bayesian semi-parametric models for survival data with a cure fraction. Biometrics 57:383–388

    Article  MathSciNet  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2001b) Bayesian survival analysis. Springer-Verlag, New York

    MATH  Google Scholar 

  • Maller R, Zhou X (1996) Survival analysis with long-term survivors. John Wiley and Sons, New York

    Google Scholar 

  • McKeague IW, Tighiouart M (2000) Bayesian estimators for conditional hazard functions. Biometrics 56:1007–1015

    Article  MATH  MathSciNet  Google Scholar 

  • Tighiouart M (2003) Modeling correlated time-varying covariate effects in a Cox-type regression model. J Modern Appl Stat Meth 2:161–167

    Google Scholar 

  • Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1078

    Article  MathSciNet  Google Scholar 

  • Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, New Jersey

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Editor, the Associate Editor and three referees for helpful comments and suggestions which have led to an improvement of this article. Dr. Chen's research was partially supported by National Institute of Health (NIH) grant numbers GM 70335 and CA 74015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Chen.

Appendix: Proofs of Properties and Theorem

Appendix: Proofs of Properties and Theorem

Proof of Property 2.1

From the definition of E j | λ0) given in (2.8), we have

$$ \begin{aligned} E(\xi_j \vert \lambda_0) &= \log\left[\frac{H_0(s_j) - H_0(s_{j-1})}{s_j - s_{j-1}} \right ] \\ &= \log\left[\frac{H_0\left(\frac{s_j + s_{j-1}}{2} + \frac{s_j - s_{j-1}}{2}\right) - H_0\left(\frac{s_j + s_{j-1}}{2} - \frac{s_j - s_{j-1}}{2}\right)}{s_j - s_{j-1}}\right]. \end{aligned} $$

Now using the definition of a derivative of the function \({H_0(\cdot)}\) and the assumption that \({\frac{s_j + s_{j-1}}{2} \rightarrow t}\), we have \({\lim_{s_j - s_{j-1} \rightarrow 0} E(\xi_j \vert \lambda_0) = \log ( \frac{\hbox{d}}{\hbox{d}t} H_0(t)) = \log h_0(t)}\). □

Proof of Property 2.2

Note that for \({t\in (s_{j-1}, s_j)}\),

$$ E[H^*(t)\vert \lambda_0] = E[\hbox{e}^{\xi_j}\vert \lambda_0](t-s_{j-1}) + \sum_{g=1}^{j-1} E[\hbox{e}^{\xi_g}\vert \lambda_0] (s_g-s_{g-1}), $$

where

$$ \begin{aligned} E[\hbox{e}^{\xi_j}\vert \lambda_0] &= E\left[\hbox{e}^{\mu_j + \sum_{l=1}^{j} \left\{\prod_{k = l+1}^j c_k \right\} w_l}\vert \lambda_0 \right] \nonumber \\ &= \left[\frac{H_0(s_j) - H_0(s_{j-1})}{s_j - s_{j-1}} \right] \times E\Bigg[\exp \Bigg(\frac{ \sum_{l=1}^j \Big\{\prod_{k=l+1}^{j} c_k^2 \Big\} b_l W}{2} \Bigg) \Bigg]. \end{aligned} $$

As α → ∞, b j → 0 and c j r for \({j = 1,2, \ldots, J}\). Thus, we have

$$ \lim_{\alpha \rightarrow \infty} E[\hbox{e}^{\xi_j}\vert \lambda_0] = \frac{H_0(s_j) - H_0(s_{j-1})}{s_j - s_{j-1}}, $$

and

$$ \lim_{\alpha \rightarrow \infty} E[H^*(t)\vert \lambda_0] = \left( \frac{t-s_{j-1} }{ s_j-s_{j-1}} \right) \Big[H_0(s_j)-H_0(s_{j-1}) \Big] + H_0(s_{j-1}). $$
(A.1)

Note that the right hand side of (A.1) equals H 0(t) when \({t \in \{s_1, s_2, \ldots, s_J\}}\) and for other values of t is only approximately equal in the sense that as \({s_j-s_{j-1}\rightarrow 0}\), the right hand side of (A.1) approaches H 0(t). Again,

$$ \hbox{Var}[H^*(t)\vert \lambda_0] = \hbox{Var}[\hbox{e}^{\xi_j}\vert \lambda_0](t-s_{j-1})^2 + \sum_{g=1}^{j-1} \hbox{Var}[\hbox{e}^{\xi_g}\vert \lambda_0] (s_g-s_{g-1})^2, $$

where

$$ \hbox{Var}[\hbox{e}^{\xi_j}\vert \lambda_0] = E[\hbox{e}^{2 \xi_j}\vert \lambda_0] - E[\hbox{e}^{ \xi_j}\vert \lambda_0]^2, $$

with

$$ \begin{aligned} E[\hbox{e}^{2 \xi_j}\vert \lambda_0] &= E\left[\hbox{e}^{2 \mu_j + 2 \sum_{l=1}^{j} \left\{\prod_{k = l+1}^j c_k \right\} w_l}\vert \lambda_0\right] \nonumber \\ &= \left[\frac{H_0(s_j) - H_0(s_{j-1})}{s_j - s_{j-1}} \right]^2 \times \; E \left[\exp \left(2 \sum_{l=1}^j \left\{\prod_{k=l+1}^{j} c_k^2 \right\} b_l W \right) \right]. \end{aligned} $$

Now letting α → ∞, we obtain

$$ \lim_{\alpha \rightarrow \infty} E[\hbox{e}^{2 \xi_j}\vert \lambda_0] = \left[\frac{H_0(s_j) - H_0(s_{j-1})}{s_j - s_{j-1}}\right]^2. $$

Thus,

$$ \hbox{Var}[H^*(t)\vert \lambda_0] \rightarrow 0, \quad \hbox{as $\alpha \rightarrow \infty$}. $$

This shows that H *(t| λ)→ H 0(t) in probability for \({t\in \{ s_1, \ldots, s_J\}}\) and that F *(t| λ) = 1−exp(−H *(t| λ))→ F 0(t| λ0) in probability. Thus, given θ, the random survival function S * p (t| λ) = exp[−θ F *(t| λ)] converges to exp[−θ F 0(t| λ0)] in probability as α → ∞. This convergence is exact for \({t\in \{s_1, \ldots, s_J\}}\) and approximate for other values of t. □

Proof of Property 2.3

Using (2.6), we have

$$ \hbox{Cov}(\xi_j, \xi_{j-1}) = E[\xi_j - \mu_j][\xi_{j-1} - \mu_{j-1}] = E[c_j(\xi_{j-1} - \mu_{j-1}) + w_j][\xi_{j-1} - \mu_{j-1}] = c_j \hbox{Var}(\xi_{j-1}), $$

and

$$ \hbox{Var}(\xi_j) = c_j^2 \hbox{Var}(\xi_{j-1}) + b_j E[W]. $$

Then the correlation of ξ j and \({\xi_{j-1}}\) is given by

$$ \begin{aligned} \hbox{corr}(\xi_j, \xi_{j-1}) &= \sqrt{\frac{ c_j^2 \hbox{Var}(\xi_{j-1})}{\hbox{Var}(\xi_{j})}} = \sqrt{1 - \frac{ b_j E[W]}{\hbox{Var}(\xi_{j})}} \\ &= \sqrt{1 - \frac{ b_j}{\sum_{l=1}^j \left\{\prod_{k=l+1}^{j}c_k^2 \right\} b_l}}\\ & = \sqrt{1 - \frac{ 1}{\sum_{l=1}^j\left\{\prod_{k=l+1}^{j} \frac{1}{(1 + b_k)^2} \right\} r^{2(j-l)}\frac{b_l}{b_j}}}.\end{aligned}$$

Now letting α → 0, we obtain

$$ \hbox{corr} (\xi_j, \xi_{j-1}) = \sqrt{1 - \frac{1}{\sum_{l=1}^j \left(\frac{r}{2}\right)^{2(j-l)}}} = \sqrt{1 - \frac{1 - (\frac{r}{2})^2}{1 - (\frac{r}{2})^{2j}}}. $$

Therefore,

$$ \hbox{corr}(\xi_j, \xi_{j-1}) \rightarrow \frac{r}{2}, \quad \hbox{as $\alpha \rightarrow 0$ and $j \rightarrow \infty$}. $$

Also letting α → ∞ gives

$$ \hbox{corr}(\xi_j, \xi_{j-1}) \rightarrow 1. $$

Proof of Theorem 3.1

In (2.1), summing out the unobserved latent variable N i yields

$$ L(\beta,\lambda\vert D)= \sum_{N} L(\beta,\lambda\vert D_{\rm comp}) = \prod^n_{i=1} \Big(\theta_i f(y_i\vert \lambda)\Big)^{\nu_i} \exp\{-\theta_i(1-S(y_i\vert \lambda))\}, $$

where θ i  = exp(x i ′β). If ν i =  0, for \({i = 1, 2, \ldots, n}\), then

$$ L(\beta,\lambda\vert D)= \prod^n_{i=1} \exp\{-\theta_i(1-S(y_i\vert \lambda))\} \; < \; \infty. $$

Thus, it suffices to prove the propriety of the posterior distribution for the case where ν i  = 1. Let δ ij =  1 if j = j i and 0 otherwise. Then \({f(y_i\vert \lambda) = \lambda_{j_i} \exp \{ - [ \lambda_{j_i} (y_i - s_{j_i-1}) +}\sum_{g=1}^{j_i-1} \lambda_g (s_g-s_{g-1}) ] \}\) and \({ S(y_i\vert \lambda) = \exp\left\{ - \left[ \lambda_{j_i} (y_i - s_{j_i-1}) + \sum_{g=1}^{j_i-1} \lambda_g (s_g - s_{g-1}) \right] \right\}}\).

Since X * is of full rank, there exists \({i^\ast_1, \ldots, i^\ast_p}\) such that \({\nu_{i^{*}_1} = \nu_{i^{*}_2} = \ldots= \nu_{i^{*}_p} = 1}\), and \({X_p^{*}=(x_{i_1^*}, x_{i_2^*},\ldots, x_{i_p^*})'}\) is of full rank. We make the transformation \({u = (u_1, \ldots, u_p)' = X_p^{*} \beta}\). This linear transformation is a one-to-one. Thus, we have

$$ \begin{aligned} \; & \int_{R^p} \prod_{l=1}^{p} f(y_{i^{*}_l}\vert \lambda) \exp(x_{i^{*}_l}^\prime \beta) \exp\left\{ - \exp(x_{i^{*}_l}^\prime \beta) (1- S(y_{i^{*}_l}\vert \lambda))\right\} \ \hbox{d} \beta \\ = &\vert X_p^{*}\vert ^{-1} \prod_{l=1}^{p} \int_{-\infty}^{\infty} f(y_{i^{*}_l}\vert \lambda) \exp(u_l) \exp\left\{ - \exp(u_l) (1-S(y_{i^{*}_l}\vert \lambda)) \right\} \ \hbox{d} u_l \nonumber \\ = &\vert X_p^{*}\vert ^{-1} \prod_{l=1}^{p} \frac{f(y_{i^{*}_l}\vert \lambda)}{1-S(y_{i^{*}_l}\vert \lambda)}. \end{aligned} $$

Since s j-1y i_j ≤  s j , we have

$$ \begin{aligned} \frac{f(y_{i_j}\vert \lambda)}{1-S(y_{i_j}\vert \lambda)} & = \frac{\lambda_j \exp\left\{ - \left[ \lambda_j (y_{i_j} - s_{j-1}) + \sum_{g=1}^{j-1} \lambda_g (s_g - s_{g-1}) \right] \right\}} {1 - \exp\left\{ - \left[ \lambda_j (y_{i_j} - s_{j-1}) + \sum_{g=1}^{j-1} \lambda_g (s_g - s_{g-1}) \right] \right\}} \\ & \leq \frac{\lambda_j \exp\left\{ - \lambda_j (y_{i_j} - s_{j-1})\right\}} {1 - \exp(- \lambda_j (y_{i_j} - s_{j-1}))} \leq K_1 \lambda_j, \end{aligned} $$

where K 1 >  0.

Note that ξ j =  log(λ j ), \(\xi_1 \vert W \sim N(\mu_1, b_1 W)\) and \(\xi_j \vert \xi_{j-1}, W \sim N(\mu_j + c_j(\xi_{j-1} - \mu_j), b_j W)\), for \(j = 2, 3, \ldots, J\). Let \(p^{*}(\beta, \xi, W, \lambda_0\vert D)= L(\beta, \xi\vert D) \pi^\ast(\xi, W, \lambda_0)\). Then, we have

$$ \int p^{*}(\beta, \xi, W, \lambda_0\vert D) \hbox{d} \beta \hbox{d} \xi \hbox{d} W \hbox{d} \lambda_0 \leq K_1 \int \hbox{e}^{\xi^\prime 1} \pi^\ast(\xi, W, \lambda_0) \hbox{d} \xi \hbox{d} W \hbox{d} \lambda_0, $$
(A.2)

where the vector 1 has all elements equal to one. It is easy to see that given that the prior distributions of W and λ0 are proper, the integral of the right hand side of (A.2) is finite. This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Chen, MH., Dey, D.K. et al. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal 13, 17–35 (2007). https://doi.org/10.1007/s10985-006-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-006-9028-7

Keywords

Navigation