Skip to main content
Log in

Alternating event processes during lifetimes: population dynamics and statistical inference

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4):1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, Berlin

    MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis, vol 8. Wiley, New York

    MATH  Google Scholar 

  • Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37(3):504–513

    Article  Google Scholar 

  • Hu XJ, Lagakos SW (2007) Nonparametric estimation of the mean function of a stochastic process with missing observations. Lifetime Data Anal 13(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  • Hu XJ, Lorenzi M, Spinelli JJ, Ying SC, McBride ML (2011) Analysis of recurrent events with non-negligible event duration, with application to assessing hospital utilization. Lifetime Data Anal 17(2):215–233

    Article  MathSciNet  MATH  Google Scholar 

  • Huang CY, Wang MC (2004) Joint modeling event and estimation for recurrent processes and failure time data. J Am Stat Assoc 99(468):1153–1165

    Article  MATH  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc B 62(4):711–730

    Article  MathSciNet  MATH  Google Scholar 

  • Müller H-G (1991) Smooth optimum kernel estimators near endpoints. Biometrika 78(3):521–530

    Article  MathSciNet  MATH  Google Scholar 

  • Munk-Jorgensen P, Mortensen PB (1992) Incidence and other aspects of the epidemiology of schizophrenia in denmark, 1971–87. Br J Psychiatry 161(4):489

    Article  Google Scholar 

  • Pena EA, Strawderman RL, Hollander M (2001) Nonparametric estimation with recurrent event data. J Am Stat Assoc 96(456):1299–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68(2):373

    Article  MathSciNet  MATH  Google Scholar 

  • Ross SM (1983) Stochastic processes, vol 23. Wiley, New York

    MATH  Google Scholar 

  • Schaubel DE, Cai J (2005) Semiparametric methods for clustered recurrent event data. Lifetime Data Anal 11(3):405–425

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MC (2005) Length bias. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. Wiley, New York, pp 2756–9

    Google Scholar 

  • Wang MC, Chang SH (1999) Nonparametric estimation of a recurrent survival function. J Am Stat Assoc 94(445):146–153

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MC, Qin J, Chiang CT (2001) Analyzing recurrent event data with informative censoring. J Am Stat Assoc 96:1057–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Yan J, Fine JP (2008) Analysis of episodic data with application to recurrent pulmonary exacerbations in cystic fibrosis patients. J Am Stat Assoc 103(482):498–510

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63(1):78–87

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Cheng Wang.

Appendix

Appendix

The follow assumptions are the regularity conditions:

  1. (C1)

    The constant \(\tau \) satisfies \(P(X\ge \tau )>0\).

  2. (C2)

    We assume that the number of switches between exacerbation and remission is bounded.

  3. (C3)

    The function \(\phi _c(s | y)\) has second order derivative with respect to y, and the density f(y) has second order derivative \(f^{(2)}(y)\).

1.1 Proof for Theorem 4.1

We note that \(\{D(s):s\in [0,\tau ]\}\) and \(\{I(X\ge s):s\in [0,\tau ]\}\) are bounded and of bounded variation, and thus are Donsker. For \(s\in [0,\tau ]\), \(n^{-1/2}\sum _{i=1}^{n}\{ D_i(s)I(X_i\ge s) - P(D(s) = 1, X\ge s)\}\) and \(n^{-1/2}\sum _{i=1}^{n}\{ I(X_i\ge s) - P(X\ge s)\}\) converge to zero-mean Gaussian processes. By applying functional Delta method, we have \(\sqrt{n}\{\hat{\phi }(s) - \phi (s) \}\) converges weakly to a zero-mean Gaussian process and

$$\begin{aligned}&\sqrt{n}\{\hat{\phi }(s) - \phi (s) \}\\ =&\frac{1}{P(X\ge s)\sqrt{n}} \sum _{i=1}^n \left\{ I(D_i(s)=1,X_i \ge s) - {P(D(s)=1,X \ge s)}\right\} \\&-\,\frac{P(D(s)=1,X \ge s) }{P(X\ge s)^2\sqrt{n}} \sum _{i=1}^n \left\{ I(X_i \ge s) - P(X\ge s) \right\} + o_p(1)\\&= \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\left\{ \frac{D_i(s)I(X_i\ge s)}{P(X\ge s)} - \frac{\phi (s)I(X_i\ge s)}{P(X\ge s)} \right\} + o_p(1)\\&\equiv \frac{1}{\sqrt{n}}\sum _{i=1}^{n}a_i(s) + o_p(1). \end{aligned}$$

Thus \(\sqrt{n}\{\hat{\phi }(s) - \phi (s) \}\) converges weakly to a zero-mean Gaussian process with covariance function \(E\{a(s_1)a(s_2)\}\) for \(s_1,s_2\in [0,\tau ]\).

1.2 Proof for Theorem 4.2

We first define

$$\begin{aligned} \hat{\mu }(s,y)= & {} n^{-1}\sum _{i=1}^{n}\int _{0}^{\tau } \frac{1}{h}K_{s,y}\left( \frac{y-u}{h}\right) {\hat{S}_C(u)}^{-1} { \Delta _i I(D_i(s)=1)dN^Y_i(u)}, \\ {\mu }(s,y)= & {} \int _{0}^{\tau } \frac{1}{h}K_{s,y}\left( \frac{y-u}{h}\right) {\mu }(s,du), \hat{\lambda }(y)\\= & {} n^{-1}\sum _{i=1}^{n}\int _{0}^{\tau } \frac{1}{h}K_{s,y}\left( \frac{y-u}{h}\right) {\hat{S}_C(u)}^{-1} { \Delta _i dN^Y_i(u)},\\ {\lambda }(y)= & {} \int _{s}^{\tau } \frac{1}{h}K_{s,y}\left( \frac{y-u}{h}\right) F(du). \end{aligned}$$

We further define

$$\begin{aligned} \tilde{\mu }_{i}(s,y)= & {} \int _{0}^{\tau } \frac{1}{h}K_{s,y}\left( \frac{y-u}{h}\right) {{S}_C(u)}^{-1} { \Delta _i I(D_i(s)=1)dN^Y_i(u)},\\ \tilde{\lambda }_{i}(y)= & {} \int _{0}^{\tau } \frac{1}{h}K_{s,y}(\frac{s-u}{h}) {{S}_C(u)}^{-1} { \Delta _i dN^Y_i(u)}. \end{aligned}$$

Note that \(E\{\tilde{\mu }_{i}(s,y)\} = \mu (s,y)\) and \(E\{\tilde{\lambda }_{i}(y)\} = \lambda (y)\). Let \(f^{(2)}\) be the second order derivative of f. With straightforward algebra, we have

$$\begin{aligned} \mu (s,y)&= \phi _c(s | y)f(y)\nonumber \\&\quad + \kappa _{s,y} \left\{ 2\frac{\partial \phi _c(s | y)}{\partial y}f^{(1)}(y)+ \phi _c(s | y)f^{(2)}(y) + \frac{\partial ^2 \phi _c(s | y)}{\partial y^2}f(y) \right\} h^2/2 + o(h^2)\end{aligned}$$
(9)
$$\begin{aligned} \lambda (y)&= f(y) + \kappa _{s,y}f^{(2)}(y)h^2/2 + o(h^2)\nonumber \\ \end{aligned}$$
(10)
$$\begin{aligned} E\{ \tilde{\mu }(s;y) \}^2&= \Vert K_{s,y}\Vert ^2 \phi _c(s | y)f(y)S_C(y)^{-1}h^{-1} {+} o(h^{-1}),\nonumber \\ \end{aligned}$$
(11)
$$\begin{aligned} E\{ \tilde{\lambda }(y)\}^2&= \Vert K_{s,y}\Vert ^2 f(y)S_C(y)^{-1}h^{-1} + o(h^{-1}) \nonumber \\ \end{aligned}$$
(12)
$$\begin{aligned} E\{ \tilde{\mu }(s,y)\tilde{\lambda }(y) \}&= \Vert K_{s,y}\Vert ^2 \phi _c(s | y)f(y)S_C(y)^{-1}h^{-1} + o(h^{-1}). \end{aligned}$$
(13)

For \(0<s<y<\tau \), we have

$$\begin{aligned}&(nh)^{1/2}\{ \hat{\phi }_c(s;y) - \mu (s,y)\lambda (y)^{-1}\} \\ =&(nh)^{1/2}{f^{-1}(y)}\{ {\hat{\mu }(s,y)-\mu (s,y)} \} - (nh)^{1/2}\phi _c(s | y){f(y)}^{-1}\{ {\hat{\lambda }(y)-\lambda (y)}\} + o_p(1)\\ =&(nh)^{1/2}{f^{-1}(y)}\left\{ \frac{1}{n}\sum _{i=1}^n \tilde{\mu }_{i}(s,y) -\mu (s,y) \right\} \\&- (nh)^{1/2} \phi _c(s | y){f(y)}^{-1}\left\{ \frac{1}{n}\sum _{i=1}^n \tilde{\lambda }_{i}(y) -\lambda (y) \right\} + o_p(1). \end{aligned}$$

By applying Equations ( 9)–(13), we have

$$\begin{aligned}&\mu (s,y)\lambda (y)^{-1} - \phi _c(s | y)\\&= \frac{1}{2}\kappa _{s,y}h^2\left\{ \frac{\partial ^2\phi _c(s | y)}{\partial y^2} + 2\frac{\partial \phi _c(s | y)}{\partial y}f^{(1)}(y){f^{-1}(y)}\right\} + o(h^2) \end{aligned}$$

and \(h\mathrm{Var}\left\{ {f^{-1}(y)}\tilde{\mu }_{i}(s,t) - \phi _c(s | y){f^{-1}(y)} \tilde{\lambda }_{i}(y) \right\} \) is

$$\begin{aligned} \frac{\Vert K_{s,y}\Vert _2^2}{f(y)S_C(y)}\left\{ \phi _c(s | y) - \phi _c(s | y)^2\right\} +o(1). \end{aligned}$$

Then the result of \(\hat{\phi }_c(s;y)\) when \(0\le s<y\le \tau \) is proved by applying central limit theorem.

1.3 Proof for asymptotic distribution of W

We assume (C1) and (C2) hold. Under the null hypothesis \(\mathcal{H}_0\): \(\phi _1(s)=\phi _2(s)\), \(0\le s\le \tau \), we have

$$\begin{aligned}&(n_1n_2/N)^{1/2}W = (n_2/N)^{1/2}\cdot n_1^{1/2}\int _{0}^{\tau }\{\hat{\phi }_1(s)-\phi _1(s)\}ds\\&- (n_1/N)^{1/2}\cdot n_2^{1/2}\int _{0}^{\tau }\{\hat{\phi }_2(s)-\phi _2(s)\}ds. \end{aligned}$$

For the kth group, define \(b_{ki}= \int _0^\tau w(s) a_{ki} (s) ds \), where

$$\begin{aligned} a_{ki} (s)= \frac{I(D_{ki}(s) {=} 1, X_{ki}{\ge } s)}{P(X_{ki}\ge s)} - \frac{P(D_{ki}(s) = 1, X_{ki}\ge s)I(X_{ki}\ge s)}{P(X_{ki}\ge s)^2} , \ \ \ k=1,2. \end{aligned}$$

Then by applying arguments similar to the proof of Theorem 4.1, we have

$$\begin{aligned} (n_1n_2/N)^{1/2}W = n_1^{-1/2}\sqrt{p_2}\sum _{i=1}^{n_1}b_{1i} - n_2^{-1/2}\sqrt{p_1}\sum _{i=1}^{n_2}b_{2i} + o_p(1). \end{aligned}$$

By applying the central limit theorem, we see that the test statistic \((n_1n_2/N)^{1/2}W\) converges in distribution to a normal distribution with zero mean and variance \(p_2E( b_{1i}^2)+p_1E( b_{2i}^2)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinohara, R.T., Sun, Y. & Wang, MC. Alternating event processes during lifetimes: population dynamics and statistical inference. Lifetime Data Anal 24, 110–125 (2018). https://doi.org/10.1007/s10985-017-9404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-017-9404-5

Keywords

Navigation