Skip to main content

Advertisement

Log in

Joint modeling of survival time and longitudinal outcomes with flexible random effects

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Joint models with shared Gaussian random effects have been conventionally used in analysis of longitudinal outcome and survival endpoint in biomedical or public health research. However, misspecifying the normality assumption of random effects can lead to serious bias in parameter estimation and future prediction. In this paper, we study joint models of general longitudinal outcomes and survival endpoint but allow the underlying distribution of shared random effect to be completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation–Maximization (EM) algorithm for computation. Either AIC and BIC criteria are adopted for selecting the number of mixtures. We demonstrate the proposed method via a number of simulation studies. We illustrate our approach with the data from the Carolina Head and Neck Cancer Study (CHANCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agresti A, Caffo B, Ohman-Strickland P (2004) Examples in which mis-specification of a random effects distribution reduces efficiency, and possible remedies. Comput Stat Data Anal 47:639–653

    Article  MATH  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) 2nd international symposium on information theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971. Budapest, Akadémiai Kiad’o, pp 267–281

  • Albert PS, Follmann DA (2000) Modeling repeated count data subject to informative dropout. Biometrics 56:667–677

    Article  MATH  Google Scholar 

  • Albert PS, Follmann DA (2007) Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Stat Methods Med Res 16:417–439

    Article  MathSciNet  Google Scholar 

  • Baghfalaki T, Ganjali M, Verbeke G (2016) A shared parameter model of longitudinal measurements and survival time with heterogeneous random-effects distribution. J Appl Stat. doi:10.1080/02664763.2016.1266309

    Google Scholar 

  • Böhning D (1999) Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and others, number 81 in monographs on statistics and applied probability. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Brown ER, Ibrahim JG (2003) A bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59:221–228

    Article  MathSciNet  MATH  Google Scholar 

  • Caffo B, Ming-Wen A, Rohde C (2007) Flexible random intercept models for binary outcomes using mixtures of normals. Comput Stat Data Anal 51:5220–5235

    Article  MathSciNet  MATH  Google Scholar 

  • Cagnone S, Viroli C (2012) A factor mixture analysis model for multivariate binary data. Stat Model 12(3):257–277

    Article  MathSciNet  Google Scholar 

  • Chakraborty A, Das K (2010) Inferences for joint modelling of repeated ordinal scores and time to event data. Comput Math Methods Med 11:281–295

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Ghosh D, Raghunathan TE, Sargent DJ (2009) Bayesian variable selection with joint modeling of categorical and survival outcomes: an application to individualizing chemotherapy treatment in advanced colorectal cancer. Biometrics 65:1030–1040

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JH, Kalbfleisch JD (1996) Penalized minimum-distance estimates in finite mixture models. Can J Stat 24:167–175

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JH, Kalbfleisch JD (2005) Modified likelihood ratio test in finite mixture models with a structural parameter. J Stat Plan Inference 129:93–107

    Article  MathSciNet  MATH  Google Scholar 

  • Cheon K, Albert PS, Zhang ZW (2012) The impact of random-effect misspecification on percentile estimation for longitudinal growth data. Stat Med 31:3708–3718

    Article  MathSciNet  Google Scholar 

  • Choi J, Cai J, Zeng D (2017) Penalized likelihood approach for simultaneous analysis of survival time and binary longitudinal outcome. Sankhya Ser B. doi:10.1007/s13571-017-0132-3

    Google Scholar 

  • Choi J, Cai J, Zeng D, Olshan AF (2015) Joint analysis of survival time and longitudinal categorical outcomes. Stat Biosci 7:19–47

    Article  Google Scholar 

  • Cook J, Stefanski LA (1994) Simulation extrapolation estimation in parametric measurement error models. J Am Stat Assoc 89:1314–1328

    Article  MATH  Google Scholar 

  • Ding J, Wang JL (2008) Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64:546–556

    Article  MathSciNet  MATH  Google Scholar 

  • Divaris K, Olshan AF, Smith J, Bell ME, Weissler MC, Funkhouser WK, Bradshaw PT (2010) Oral health and risk for head and neck squamous cell carcinoma: the Carolina Head and Neck Cancer Study. Cancer Cause Control 21:567–575

    Article  Google Scholar 

  • Dunson DB, Herring AH (2005) Bayesian latent variable models for mixed discrete outcomes. Biostatistics 6:11–25

    Article  MATH  Google Scholar 

  • Elashoff RM, Li G, Li N (2007) An approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 26:2813–2835

    Article  MathSciNet  Google Scholar 

  • Elashoff RM, Li G, Li N (2008) A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64:762–771

    Article  MathSciNet  MATH  Google Scholar 

  • Fieuws S, Spiessens B, Draney K (2004) Mixture models. In: De Boeck P, Wilson M (eds) Explanatory item response models: a generalized linear and nonlinear approach. Springer, New York, pp 317–340 Ch. 11

    Chapter  Google Scholar 

  • Gallant AR, Nychka DW (1987) Seminonparametric maximum likelihood estimation. Econometrica 55:363–390

    Article  MathSciNet  MATH  Google Scholar 

  • Garre FG, Zwinderman AH, Geskus RB, Sijpkens YWJ (2008) A joint latent class changepoint model to improve the prediction of time to graft failure. J R Stat Soc Ser A (Stat Soc) 171(1):299–308

    MathSciNet  Google Scholar 

  • Ghosh P, Ghosh K, Tiwari RC (2011) Joint modeling of longitudinal data and informative dropout time in the presence of multiple changepoints. Stat Med 30(6):611–626

    Article  MathSciNet  Google Scholar 

  • Henderson R, Diggle P, Dobson A (2000) Joint modeling of longitudinal measurements and event time data. Biometrics 4:465–480

    MATH  Google Scholar 

  • Heagerty PJ, Kurland BF (2001) Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88:973–985

    Article  MathSciNet  MATH  Google Scholar 

  • Hogan J, Laird N (1997) Mixture models for the joint distribution of repeated measures and event times. Stat Med 16:239–257

    Article  Google Scholar 

  • Hsieh F, Tseng YK, Wang JL (2006) Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62:1037–1043

    Article  MathSciNet  MATH  Google Scholar 

  • Hu W, Li G, Li N (2009) A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 28:1601–1619

    Article  MathSciNet  Google Scholar 

  • Huang X, Li G, Elashfoff RM (2010) A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Stat Interface 3:185–195

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Li G, Elashfoff RM, Pan J (2011) A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Anal 17:80–100

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Stefanski LA, Davidian M (2006) Latent-model robustness in structural measurement error models. Biometrika 93:53–64

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Stefanski LA, Davidian M (2009) Latent-model robustness in joint models for a primary endpoint and a longitudinal process. Biometrics 65(3):719–727

    Article  MathSciNet  MATH  Google Scholar 

  • Kleinman KP, Ibrahim JG (1998) A semiparametric Bayesian approach to the random effects model. Biometrics 54:921–938

    Article  MATH  Google Scholar 

  • Larsen K (2004) Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60:85–92

    Article  MathSciNet  MATH  Google Scholar 

  • Lemenuel-Diot A, Mallet A, Laveille C, Bruno R (2005) Estimating heterogeneity in random effects models for longitudinal data. Biom J 47:329–345

    Article  MathSciNet  Google Scholar 

  • Lesperance ML, Kalbfleisch JD (1992) An algorithm for computing the nonparametric MLE of a mixing distribution. J Am Stat Assoc 87:120–126

    Article  MATH  Google Scholar 

  • Lin H, McCulloch CE, Turnbull BW, Slate EH, Clark LC (2000) A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations. Stat Med 19:1303–1318

    Article  Google Scholar 

  • Lin H, Turnbull BW, McCulloch CE, Slate EH (2002) Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. J Am Stat Assoc 97(457):53–65

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L, Ma JZ, O’Quigley J (2008) Joint analysis of multi-level repeated measures data and survival: an application to the end stage renal disease (ESRD) data. Stat Med 27:5676–5691

    MathSciNet  Google Scholar 

  • Liu L, Wolfe RA, Kalbfleisch JD (2007) A shared random effects model for censored medical costs and mortality. Stat Med 26:139–155

    Article  MathSciNet  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MathSciNet  MATH  Google Scholar 

  • Muthén B, Shedden K (1999) Finite mixture modeling with mixture outcome using the EM algorithm. Biometrics 55:463–469

    Article  MATH  Google Scholar 

  • Neuhaus JM, Hauck WW, Kalbfleisch JD (1992) The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika 79:755–762

    Article  Google Scholar 

  • Proust-Lima C, Séne M, Taylor JM, Jacqmin-Gadda H (2014) Joint latent class models for longitudinal and time-to-event data: a review. Stat Methods Med Res 23(1):74–90

    Article  MathSciNet  Google Scholar 

  • Rizopoulos D, Verbeke G, Lesaffre E, Vanrenterghem Y (2008) A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics 64:611–619

    Article  MathSciNet  MATH  Google Scholar 

  • Rizopoulos D, Verbeke G, Molenberghs G (2008) Shared parameter models under random effects misspecification. Biometrika 95:63–74

    Article  MathSciNet  MATH  Google Scholar 

  • Satterthwaite FW (1946) An approximate distribution of estimates of variance components. Biometrics 2:110–114

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Song X, Davidian M, Tsiatis AA (2002) A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58:742–753

    Article  MathSciNet  MATH  Google Scholar 

  • Song X, Wang CY (2007) Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 64:557–566

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski LA, Cook J (1995) Simulation extrapolation: the measurement error jackknife. J Am Stat Assoc 90:1247–56

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng YK, Hsieh R, Wang JL (2005) Joint modelling of accelerated failure time and longitudinal data. Biometrika 92:587–603

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatis AA, Degruttola V, Wulfsohn M (1995) Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc 90:27–37

    Article  MATH  Google Scholar 

  • Tsiatis AA, Davidian M (2001) A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88:447–458

    Article  MathSciNet  MATH  Google Scholar 

  • Verbeke G, Lesaffre E (1996) A linear mixed-effects model with heterogeneity in the random-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 91:217–221

    Article  MATH  Google Scholar 

  • Verbeke G, Molengerghs G (2000) Linear mixed models for longitudinal data, Springer series in statistics. Springer, New-York

    Google Scholar 

  • Verbeke G, Molengerghs G (2013) The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics 14:477–490

    Article  Google Scholar 

  • Wang Y, Taylor JMG (2001) Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 96:895–905

    Article  MathSciNet  MATH  Google Scholar 

  • Wang CY, Wang N, Wang S (2000) Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements. Biometrics 56:487–495

    Article  MATH  Google Scholar 

  • Wu M, Carroll R (1988) Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process. Biometrics 44:175–188

    Article  MathSciNet  MATH  Google Scholar 

  • Wulfsohn M, Tsiatis AA (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53:330–39

    Article  MathSciNet  MATH  Google Scholar 

  • Xu W, Hedeker D (2001) A random-effects mixture model for classifying treatment response in longitudinal clinical trials. J Biopharm Stat 11:253–273

    Article  Google Scholar 

  • Xu J, Zeger S (2001a) The evaluation of multiple surrogate endpoints. Biometrics 57:81–87

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J, Zeger S (2001b) Joint analysis of longitudinal data comprising repeated measures and times to events. Appl Stat 50:375–387

    MathSciNet  MATH  Google Scholar 

  • Ye W, Lin XH, Taylor JMG (2008) Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach. Biometrics 64:1238–1246

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Cai J (2005a) Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures. Lifetime Data Anal 11:151–174

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Cai J (2005b) Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. Ann Stat 33:2132–2163

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang D, Davidian M (2001) Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics 57:795–802

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Institutes of Health grants R01 ES021900 and P01 CA142538 and the National Center for Research Resources grant UL1 RR025747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 571 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Zeng, D., Olshan, A.F. et al. Joint modeling of survival time and longitudinal outcomes with flexible random effects. Lifetime Data Anal 24, 126–152 (2018). https://doi.org/10.1007/s10985-017-9405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-017-9405-4

Keywords

Navigation