Skip to main content
Log in

Asymptotic distribution of singular values of powers of random matrices

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let x be a complex random variable such that \( {\mathbf{E}}x = 0,\,{\mathbf{E}}{\left| x \right|^2} = 1 \), and \( {\mathbf{E}}{\left| x \right|^4} < \infty \). Let \( {x_{ij}},i,j \in \left\{ {1,2, \ldots } \right\} \), be independent copies of x. Let \( {\mathbf{X}} = \left( {{N^{ - 1/2}}{x_{ij}}} \right) \), 1≤i,jN, be a random matrix. Writing X for the adjoint matrix of X, consider the product X m X m with some m ∈{1,2,...}. The matrix X m X m is Hermitian positive semidefinite. Let λ12,...,λ N be eigenvalues of X m X m (or squared singular values of the matrix X m). In this paper, we find the asymptotic distribution function \( {G^{(m)}}(x) = {\lim_{N \to \infty }}{\mathbf{E}}F_N^{(m)}(x) \) of the empirical distribution function \( F_N^{(m)}(x) = {N^{ - 1}}\sum\nolimits_{k = 1}^N {\mathbb{I}\left\{ {{\lambda_k} \leqslant x} \right\}} \), where \( \mathbb{I}\left\{ A \right\} \) stands for the indicator function of an event A. With m=1, our result turns to a well-known result of Marchenko and Pastur [V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sb., 1:457–483, 1967].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.D. Bai, Methodologies in spectral analysis of large-dimensional random matrices, a review, Stat. Sin., 9(3):611–677, 1999.

    MATH  Google Scholar 

  2. T. Banica, S. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws, preprint, arXiv:0710.5931.

  3. T. Carleman, Les Fonctions Quasi-analytiques, Paris, 1926.

  4. I.M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, Electron. J. Comb., 13(1), 2006.

  5. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edition, Addison-Wesley Professional, 1994.

  6. V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sb., 1:457–483, 1967.

    Article  MATH  Google Scholar 

  7. W. Mlotkowski, Fuss–Catalan numbers in noncommutative probability, preprint.

  8. A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge Univ. Press, 2006.

  9. F. Oravecz, On the powers of Voiculescu’s circular element, Stud. Math., 145:85–95, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Alexeev.

Additional information

Partially supported by the RF grant of the Leading Scientific Schools (No. NSH-4472.2010.1), RFBR (grant No. 09-01-12180), RFBR–DFG (grant No. 09-01-91331), and CRC 701 “Spectral Structures and Topological Methods in Mathematics”, Bielefeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, N., Götze, F. & Tikhomirov, A. Asymptotic distribution of singular values of powers of random matrices. Lith Math J 50, 121–132 (2010). https://doi.org/10.1007/s10986-010-9074-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-010-9074-4

Keywords

MSC

Navigation