Skip to main content

Advertisement

Log in

In Silico Analyses of Staphylococcal Enterotoxin B as a DNA Vaccine for Cancer Therapy

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Immunotherapy has been suggested as a compelling alternative approach for conventional breast cancer treatment methods. Despite the paramount rolesof T cells in this approach, insufficient numbers of them in the combat against progressive tumor growth still remain to be dealt with. Super antigens are a class of antigens, capable of eliciting T cell proliferation response against desired antigens. Staphylococcal enterotoxin B (SEB) is categorized as a super antigen, its anti-tumor properties has been previously reported. However, to the best our knowledge, SEB has not been ever administered as a DNA construct. In the present study, we exploited bioinformatics tools to assess the immunoreactivity of a SEB-coding DNA construct that serves as a DNA vaccine for breast cancer therapy. Potential B and T (MHC class I and II binders) cell epitopes of the hypothetically expressed protein, along with its sub cellular localization were predicted. Moreover, probable glycosylation and phosphorylation sites within the protein sequence were determined. The gene sequence was optimized according to murine model codon bias and its mRNA stability was analyzed. Employing an integrative in silico approach, we revealed that apparently the construct could be efficiently expressed in mouse model. Moreover, the hypothetically expressed protein could act as an amenable adjuvant in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCG:

Bacillus Calmette–Guerin

SAg:

Superantigens

SEB:

Staphylococcal enterotoxin B

MHC-II:

Histocomptability complex class II

TCRs:

T cell receptors

PTMs:

Post translational modifications

References

  • Abrahmsén L (1995) Superantigen engineering. Curr Opin Struct Biol 5(4):464–470

    Article  PubMed  Google Scholar 

  • Alpaugh RK, Schultz J et al (1998) Superantigen-targeted therapy: phase I escalating repeat dose trial of the fusion protein PNU-214565 in patients with advanced gastrointestinal malignancies. Clin Cancer Res 4(8):1903–1914

    CAS  PubMed  Google Scholar 

  • Amani J, Mousavi SL et al (2009) In silico analysis of chimeric espA, eae and tir fragments of Escherichia coli O157:H7 for oral immunogenic applications. Theor Biol Med Model 6:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Arcus VL, Proft T et al (2000) Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes1. J Mol Biol 299(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Stahlberg K et al (2011) Impact of radiotherapy, chemotherapy and surgery in multimodal treatment of locally advanced esophageal cancer. Int Soc Cell 81(5–6):387–394

    CAS  Google Scholar 

  • Bhasin M, Raghava G (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23):3195–3204

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava G (2007) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosciences 32(1):31–42

    Article  CAS  Google Scholar 

  • Borriello M, Laccetti P et al (2011) A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours. Br J Cancer 104(11):1716–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady S, Shatkay H (2008) EpiLoc: a (working) text-based system for predicting protein subcellular location. In: Pacific Symposium on Biocomputing. World Scientific, pp. 604–615

  • Briesemeister S, Blum T et al (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J Proteome Res 8(11):5363–5366

    Article  CAS  PubMed  Google Scholar 

  • Chihara G, Maeda Y et al (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature 222:687–688

    Article  CAS  PubMed  Google Scholar 

  • Chou PY, Fasman GD (1977) Secondary structural prediction of proteins from their amino acid sequence. Trends Biochem Sci 2(6):128–131

    Article  CAS  Google Scholar 

  • Dougan DA, Micevski D et al (2012) The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases. Biochim et Biophysica Acta (BBA)—Mole Cell Res 1823(1):83–91

    Article  CAS  Google Scholar 

  • Emini EA, Hughes JV et al (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erlandsson E, Andersson K et al (2003) dentification of the antigenic epitopes in staphylococcal enterotoxins A and E and design of a superantigen for human cancer therapy. J Mol Biol 333(5):893–905 I.

    Article  CAS  PubMed  Google Scholar 

  • Fleischer B, Schrezenmeier H (1988) T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med 167(5):1697

    Article  CAS  PubMed  Google Scholar 

  • Fooladi AAI, Nourani M (2009) Histological analysis antimetastatic effect of intera-venus injection of staphylococcal enterotoxin b and monophosphoryl lipid a against fibrosarchoma in lung tissue. J Iran Anat Sci 7:121–131

    Google Scholar 

  • Fooladi AAI, Sattari M et al (2008) In vivo induction of necrosis in mice fibrosarcoma via intravenous injection of type B staphylococcal enterotoxin. Biotechnol Lett 30(12):2053–2059

    Article  CAS  PubMed  Google Scholar 

  • Fooladi, I. A. A., Sattari M et al Synergistic effects between staphylococcal enterotoxin type B and monophosphoryl lipid A against mouse fibrosarcoma. J BUON 15(2): 340

  • Forsberg G, Ohlsson L et al (2001) Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer 85(1):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JD (2011) Clarifying the mechanism of superantigen toxicity. PLoS Biol 9(9):e1001145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giantonio BJ, Alpaugh RK et al (1997) Superantigen-based immunotherapy: a phase I trial of PNU-214565, a monoclonal antibody-staphylococcal enterotoxin A recombinant fusion protein, in advanced pancreatic and colorectal cancer. J Clinical Oncol 15(5):1994–2007

    Article  CAS  Google Scholar 

  • Hansson J, Ohlsson L et al (1997) Genetically engineered superantigens as tolerable antitumor agents. Proc Nat Acad Sci USA 94(6):2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park K-J et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(suppl 2): W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Xuan X et al (2012) Anti-tumor function of double-promoter regulated adenovirus carrying SEA gene, in the treatment of bladder cancer. Cell Biochem Biophys: 1–7

  • Ishii KJ, Kawakami K et al (2003) Antitumor therapy with bacterial DNA and toxin. Clin Cancer Res 9(17):6516–6522

    CAS  PubMed  Google Scholar 

  • Jahangiri A, Rasooli I et al (2011). An in silico DNA vaccine against listeria monocytogenes. Vaccine 29:6948-6958

    Article  Google Scholar 

  • Jahangiri A, Rasooli I et al (2012). Precise detection of L. monocytogenes hitting its highly conserved region possessing several specific antibody binding sites. J Theor Biol

  • Jahangiri A, Rasooli I et al (2017) In silico design of an immunogen against Acinetobacter baumannii based on a novel model for native structure of Outer membrane protein A. Microb Pathog 105:201–210

    Article  CAS  PubMed  Google Scholar 

  • Karplus P, Schulz G (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72(4):212–213

    Article  CAS  Google Scholar 

  • Kato M, Nakamura Y et al. (2011) Enhanced anti-tumor immunity by superantigen-pulsed dendritic cells. Cancer Immunol Immunother 60:1–10

    Article  Google Scholar 

  • Khalili S, Jahangiri A et al (2014) Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol Immunol Hung 61(3):285–307

    Article  CAS  PubMed  Google Scholar 

  • Khalili S, Rahbar MR et al (2015) In silico analyses of Wilms tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 379:66–78

    Article  CAS  PubMed  Google Scholar 

  • Khalili S, Jahangiri A et al (2017) Structural pierce into molecular mechanism underlying Clostridium perfringens epsilon toxin function. Toxicon. doi:10.1016/j.toxicon.2017

    PubMed  Google Scholar 

  • Khalili S, Rasaee MJ et al (2017) 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Mol Biol 51(1):155–166

    Article  CAS  Google Scholar 

  • Kringelum JV, Lundegaard C et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamm D, Stogdill V et al (1986) Complications of Bacillus Calmette–Guerin immunotherapy in 1278 patients with bladder cancer. J Urol 135(2):272

    Article  CAS  PubMed  Google Scholar 

  • Lanier LL (2001) A renaissance for the tumor immunosurveillance hypothesis. Nature Med 7(11):1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Larsen J, Lund O et al (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(2):1–7

    Google Scholar 

  • Larsen MV, Lundegaard C et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8(1):424

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurila K, Vihinen M (2011) PROlocalizer: integrated web service for protein subcellular localization prediction. Amino Acids 40(3):975–980

    Article  CAS  PubMed  Google Scholar 

  • LeClaire RD, Bavari S (2001) Human antibodies to bacterial superantigens and their ability to inhibit T-cell activation and lethality. Antimicrob Agents Chemother 45(2):460–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lussow AR, MacDonald HR (1994) Differential effects of superantigen-induced “anergy” on priming and effector stages of a T cell-dependent antibody response. Eur J Immunol 24(2):445–449

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Vert J-P et al (2005) A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci 14(11):2804–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melief, C. J. M., R. E. M. Toes et al (2000) Strategies for immunotherapy of cancer. Adv Immunol 75:235–282

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Ragheb JA et al (1999) Anergy and cytokine-mediated suppression as distinct superantigen-induced tolerance mechanisms in vivo. J Exp Med 190(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–35

    Article  CAS  PubMed  Google Scholar 

  • Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8(11):765–778

    Article  CAS  PubMed  Google Scholar 

  • Ortega E, Abriouel H et al (2010) Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins 2(8):2117–2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Papageorgiou AC, Tranter HS et al (1998a) Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol 277(1):61

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou AC, Tranter HS et al (1998b) Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 Å resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol 277(1):61–79

    Article  CAS  PubMed  Google Scholar 

  • Parker J, Guo D et al (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. BioChemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  • Pastan I, Chaudhary V et al (1992) Recombinant toxins as novel therapeutic agents. Annu Rev Biochem. doi:10.1146/annurev.bi.61.070192.001555

    Google Scholar 

  • Patyar S., A. Prakash et al. (2012) Bacteria as a therapeutic approach in cancer therapy. in: Bacteria and cancer. Springer, Dordrecht, pp. 185–208

  • Perabo, F. G. E., Willert PL et al (2005) Preclinical evaluation of superantigen (staphylococcal enterotoxin B) in the intravesical immunotherapy of superficial bladder cancer. Int J Cancer 115(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Pesonen S, Diaconu I et al (2012) Oncolytic immunotherapy of advanced solid tumors with a CD40L expressing replicating adenovirus: assessment of safety and immunological responses in patients. Cancer Res 72:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko J, Bui H-H et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9(1):514

    Article  Google Scholar 

  • Proft T, Fraser JD (2003) Bacterial superantigens. Clin Exp Immunol 133(3):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reche PA, Reinherz EL (2007) Prediction of peptide-MHC binding using profiles. Methods Mol Biol 409:185–200

    Article  CAS  PubMed  Google Scholar 

  • Reis LO, Ferreira U et al (2011) Anti-angiogenic effects of the superantigen staphylococcal enterotoxin B and Bacillus Calmette–Guérin immunotherapy for nonmuscle invasive bladder cancer. J Urol 187:438-445

    Google Scholar 

  • Ren J, Wen L et al (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19(2):271–273

    Article  CAS  PubMed  Google Scholar 

  • Rice J, Ottensmeier CH et al (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl A, Hansson J et al (1996) Immune response during tumor therapy with antibody-superantigen fusion proteins. Int J Cancer 68(1):109–113

    Article  CAS  PubMed  Google Scholar 

  • Sefid F, Rasooli I et al (2013) In silico determination and validation of baumannii acinetobactin utilization a structure and ligand binding site. BioMed Res Int. doi:10.1155/2013/172784

    PubMed  PubMed Central  Google Scholar 

  • Sefid F, Rasooli I et al (2015) Functional exposed amino acids of BauA as potential immunogen against Acinetobacter baumannii. Acta Biotheor 63(2):129–149

    Article  PubMed  Google Scholar 

  • Serbina NV, Salazar-Mather TP et al (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Ward E et al (2011) Cancer statistics, 2011.CA 6:212–236

    Google Scholar 

  • Singh H, Raghava G (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Ansari HR et al (2013) Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS ONE 8(5):e62216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Godfrey DI et al (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2(4):293–299

    Article  CAS  PubMed  Google Scholar 

  • Spaulding AR, Salgado-Pabón W et al (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson FK, Ottensmeier CH et al (2010) DNA vaccines against cancer come of age. Curr Opin Immunol 22(2):264–270

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Shi L et al (2011) Immune modulation and safety profile of adoptive immunotherapy using expanded autologous activated lymphocytes against advanced cancer. Clin Immunol 138(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Furey W et al (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359(6398):801–806

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Akutsu T (2007) Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition. BMC Bioinformatics 8(1):466

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokunaga T, Yamamoto T et al (1999) How BCG led to the discovery of immunostimulatory DNA. Jpn J Infect Dis 52(1):1

    CAS  PubMed  Google Scholar 

  • Toobak H, Rasooli I et al (2013) Immune response variations to Salmonella enterica serovar Typhi recombinant porin proteins in mice. Biologicals 41(4):224–230

    Article  CAS  PubMed  Google Scholar 

  • Tsai AK, Oh S et al (2011) A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neuro-Oncol 103(2):255–266

    Article  CAS  Google Scholar 

  • Varshney AK, Wang X et al (2011) Generation, characterization, and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B-induced lethal shock. J Biol Chem 286(11):9737–9747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma RS, Potala S et al (2012) Application of microbial toxins for cancer therapy. Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp. 647–662

  • Weldon JE, Pastan I (2011) A guide to taming a toxin–recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 278(23):4683–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Wang X et al (2011) An engineered superantigen SEC2 exhibits promising antitumor activity and low toxicity. Cancer Immunol Immunother 60(5):705–713

    Article  CAS  PubMed  Google Scholar 

  • Yousefi F, Siadat SD et al (2016) Tagging staphylococcal enterotoxin B (SEB) with TGFaL3 for breast cancer therapy. Tumor Biol 37(4):5305–5316

    Article  CAS  Google Scholar 

  • Yu CS, Chen YC et al (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Qiu J et al. (2012). “In vitro and in vivo anti-tumor activities of anti-EGFR single-chain variable fragment fused with recombinant gelonin toxin. J Cancer Res Clin Oncol 138:1–10

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the Applied Microbiology Research Center (AMRC) of Baqiyatallah University of Medical Sciences (BUMS).

Funding

This study was not funded by any grant form institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Imani fooladi.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangiri, A., Amani, J., Halabian, R. et al. In Silico Analyses of Staphylococcal Enterotoxin B as a DNA Vaccine for Cancer Therapy. Int J Pept Res Ther 24, 131–142 (2018). https://doi.org/10.1007/s10989-017-9595-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9595-3

Keywords

Navigation