Skip to main content
Log in

Influence of Whey Protein Concentrate on the Production of Antibacterial Peptides Derived from Fermented Milk by Lactic Acid Bacteria

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

In the study, growth, proteolysis and antimicrobial activity of lactic acid bacteria were evaluated in skim milk medium supplemented with different concentration of whey protein concentrate (WPC 70). Lactobacillus helveticus (V3) showed maximum pH reduction with 1% WPC. Lactobacillus rhamnosus (NS4) also produced maximum lactic acid production and viable cells counts at 1 and 1.5% WPC, respectively. However, V3 showed maximum proteolytic activity with 1.5% WPC. Streptococcus thermophilus (MD2) was found to exhibit maximum antimicrobial activity with 1.5% WPC. Peptides formed during fermentation were purified by RP-HPLC and identified using RP-LC/MS analysis. Antimicrobial peptide was identified as lactoferrin, which was found in fermented milk supplemented with 1.5% WPC by NS4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anas M, Eddine HJ, Mebrouk K (2008) Antimicrobial activity of Lactobacillus species isolated from Algerian raw goat’s milk against Staphylococcus aureus. World J Dairy Food Sci 3(2):39–49

    Google Scholar 

  • Antunes AEC, Cazetto TF, Bolini HMA (2005) Viability of probiotic microorganisms during storage, post acidification and sensory analysis of fat-free yoghurts with added whey protein concentrate. Int J Dairy Technol 58:169–173

    Article  Google Scholar 

  • Beganovic J, Kos B, Pavunc AL, Uroic K, Dzidara P, Suskovic J (2013) Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 20:58–64

    Article  CAS  PubMed  Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Burya D, Jelena P, Kimura K (1998) Whey protein concentrate as a nutrient supplement for lactic acid bacteria. Int Dairy J 8(2):149–151

    Article  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    Article  CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int Dairy J 16:1180–1189

    Article  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait INRA Ed 87(1):21–38

    Article  CAS  Google Scholar 

  • FitzGerald RJ, Meisel H (2003) Milk protein hydrolysates and bioactive peptides. In: Fox PF, McSweeney PLH (ed) Advanced dairy chemistry 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 675–698

    Google Scholar 

  • Fuglsang A, Rattray FP, Nilsson D, Nyborg NCB (2003) Lactic acid bacteria: inhibition of angiotensin converting enzymes in vitro and in vivo. Antonie Leeuwenhoek 83:27–34

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F (2002) Production of angiotensin-Iconverting enzyme-inhibitory peptides in fermented milk started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactobacillus lactis subsp. cremoris FT4. Appl Environ Microbiol 66:3898–3904

    Article  Google Scholar 

  • Hati S, Sreeja V, Solanki J, Prajapati JB (2015) Significance of proteolytic microorganisms on ACE-inhibitory activity and release of bioactive peptides during fermentation of milk. Indian. J Dairy Sci 68:1–8

    Google Scholar 

  • Hati S, Sakure A, Manadal S (2016) Impact of proteolytic Lactobacillus helveticus MTCC5463 on production of bioactive peptides derived from honey based fermented milk. Int J Pept Res Ther 22(4):1108–1119

    Google Scholar 

  • Indian Standards:1479 (1961) Methods of test for dairy industry Part-II chemical analysis of milk. Indian Standards Institution, New Delhi

    Google Scholar 

  • Jakubczyk A, Baraniak B (2014) Angiotensin I converting enzyme inhibitory peptides obtained after in vitro hydrolysis of pea (Pisum sativum var. Bajka) globulins. BioMed Res Int 2014:1–8

    Article  Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kailasapathy K, Supriadi D (1996) Effect of whey protein concentrate on the survival of Lactobacillus acidophilus in lactose hydrolyzed yogurt during refrigerated storage. Milchwissenschaft 51: 566–569

    Google Scholar 

  • Kailasapathy K, Harmstorf I, Philips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis spp. lactis in stirred fruit yogurts. J LWT-Food Sci Technol 41:1317–1322

    Article  CAS  Google Scholar 

  • Kathiriya MR, Prajapati JB, Hati S (2016) Significance of growth rate, acceptability of fermented milk and release of peptides by lactic cultures. Res Rev 5(1): 31–40

    CAS  Google Scholar 

  • Kenny O, FitzGerald RJ, O’Cuinn G, Beresford T, Jordan K (2003) Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus. Int Dairy J 13:509–516

    Article  CAS  Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides—opportunities for designing future foods. Curr Pharm Des 9:1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Vij S (2015) Growth and antibacterial activity of proteolytic Probiotic Lactobacillus rhamnosus C6 in soymilk and whey. Indian J Dairy Sci 68(3):229–238

    Google Scholar 

  • Li H, Yan L, Wang J, Zhang Q, Zhou Q, Sun T, Chen W, Zhang H (2012) Fermentation characteristics of six probiotic strains in soymilk. Ann Microbiol 62:1473–1483

    Article  CAS  Google Scholar 

  • Li D, Ni K, Pang H, Wang Y, Cai Y, Jin Q (2015) Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian-Australas J Anim Sci 28(5):620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matar C, Amiot J, Savoie L, Goulet J (1996) The effect of milk fermentation by Lactobacillus helveticus on the release of peptide during in vitro digestion. J Dairy Sci 79:971–979

    Article  CAS  PubMed  Google Scholar 

  • Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Mel’nikova EU, Koroleva NS (1975) Capacity of Lb. bulgaricus and Str. thermophilus starter to produce antibiotic substances. Dairy Sci Abstr 37(7):4329

    Google Scholar 

  • Mezaini A, Chihib NE, Dilmi Bouras A, Nedjar-Arroume N, Pierre Hornez J (2009) Antibacterial activity of some lactic acid bacteria isolated from an Algerian dairy product. J Environ Public Health 678495:6

    Google Scholar 

  • Milanović S, Iličić M, Đurić M, Carić M (2009) Effect of transglutaminase and whey protein concentrate on textural characteristics of low fat probiotic yoghurt. Milchwissenschaft 64:388–392

    Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I converting enzyme inhibitors from sour milk. J Dairy Sci 78:777–783

    Article  CAS  PubMed  Google Scholar 

  • Ogunbanwo ST, Sanni AI, Onilude AA (2003) Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. Afr J Biotechnol 2(8):219–227

    Article  CAS  Google Scholar 

  • Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. BioMetals 17(3):189–196

    Article  CAS  PubMed  Google Scholar 

  • Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Souza Cruz R, Alves Medeiros EA (2012) Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 11:187–204

    Article  Google Scholar 

  • Pescuma M, Hébert EM, Mozzi F, Font de Valdez G (2010) Functional fermented whey-beverage using lactic acid bacteria. Int J Food Microbiol 141:73–81

    Article  CAS  PubMed  Google Scholar 

  • Ranganna R (2005) Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Rodríguez-Figueroa JC, González-Córdova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba B (2012) Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci 95:5536–5543

    Article  PubMed  Google Scholar 

  • Rybka S, Kailasapathy K (1995) The survival of culture bacteria in fresh and freeze-dried AB yogurts. Aust J Dairy Technol 50(2):58–60

    Google Scholar 

  • Shiby VK, Radhakrishna K, Bawa AS (2013) Development of whey-fruit-based energy drink mixes using D optimal mixture design. Int J Food Sci Technol 48:742–748

    Article  CAS  Google Scholar 

  • Shihata A, Shah NP (2000) Proteolytic profile of yoghurt and probiotic bacteria. Int Dairy J 10:401–408

    Article  CAS  Google Scholar 

  • Shimizu M (2004) Food-derived peptides and intestinal functions. Biofactors 21:43–47

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Radha C, Prakash J, Kaul P (2007) Whey protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chem 101:1484–1491

    Article  CAS  Google Scholar 

  • Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP (2013) Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 2013:390230. doi:10.1155/2013/390230

    Article  PubMed  PubMed Central  Google Scholar 

  • Solanki D, Hati S, Sakure A (2017) In silico and in vitro analysis of novel angiotensin i-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int J Pept Res Ther. doi: 10.1007/s10989-017-9577-5

    Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedure of statistics—a biometrical approach. McGraw-Hill Kogakusha Ltd, Tokyo

    Google Scholar 

  • Tagliazucchi D, Martini S, Bellesia S, Conte A (2015) Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. Int J Food Sci Nutr 66(7):774–782

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Toure R, Kheadr E, Lacroix C, Moroni O, Fliss I (2003) Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J Appl Microbiol 95:1058–1069

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Huang LF, Lin CC, Tsen HY (2004) Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39. Int J Food Microbiol 96:1–12

    Article  PubMed  Google Scholar 

  • Yuliana N, Rangga A, Rakhmiati (2010) Manufacture of fermented coco milk-drink containing lactic acid bacteria cultures. Afr J Food Sci 4(9):558–562

    CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by Department of Science and Technology, New Delhi, India under Young Scientist Scheme (Grant No. DST/LS351/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrota Hati.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hati, S., Patel, N., Sakure, A. et al. Influence of Whey Protein Concentrate on the Production of Antibacterial Peptides Derived from Fermented Milk by Lactic Acid Bacteria. Int J Pept Res Ther 24, 87–98 (2018). https://doi.org/10.1007/s10989-017-9596-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9596-2

Keywords

Navigation