Skip to main content
Log in

Recombinant Production and Antimicrobial Assessment of Beta Casein- IbAMP4 as a Novel Antimicrobial Polymeric Protein and its Synergistic Effects with Thymol

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

There is a growing research interest on products with antimicrobial activity. Antimicrobial polymers are one of the most surefire procedures to combat microbes. In the present study, the ability of Βeta-casein- one of the milk major self assembly proteins with high polymeric film production capability—as a fusion partner of Ib-AMP4 antimicrobial peptide was investigated. Also, the antimicrobial activities of Βeta-casein- IbAMP4 fusion protein antimicrobial against common food pathogens were assessed. The pET21a-BCN-Ib-AMP 4 construct was transformed to Escherichia coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg mL−1 fusion protein by ultrafiltration. 5 μg mL−1 H2O2 was applied for accelerating the formation of two necessary disulfide bonds. Antimicrobial assays were performed against E. coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus and Candida albicans. Results of antimicrobial tests confirmed the efficiency of BCN-IbAMP4 against all tested microorganisms. Overall, the combination of thymol plus BCN-IbAMP4 increased their antimicrobial activities. MIC, MBC, MFC, FICI and FBCI values showed strong synergistic activity between the two examined compounds. Time kill and growth kinetic studies indicated significant reduction of cell viability during first period of exposure to BCN-IbAMP4 and thymol combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audic JL, Chaufer B, Daufin G (2003) Non-food applications of milk components and dairy co-products: a review. Lait 83:417–438

    Article  CAS  Google Scholar 

  • Bevilacqua A, Corbo MR, Sinigaglia M (2007) Combined effects of modified atmosphere packaging and thymol for prolonging the shelf life of caprese salad. J Food Prot 70:722–728

    Article  PubMed  Google Scholar 

  • Blanco-Padilla A, Soto KM, Hernández-Iturriaga M, Mendoza S (2014) Food antimicrobials nanocarriers. Sci World J. doi:10.1155/2014/837215

    Google Scholar 

  • Cha JD, Lee JH, Cho KM, Choi SM, Park JH (2014) Synergistic effect between Cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid Based Complement Altern Med 2014:450572–450588

    Article  Google Scholar 

  • Choi H, Chakraborty S, Liu R, Gellman SH, Weisshaar JC (2014) Medium effects on minimum inhibitory concentrations of nylon-3 polymers against E. coli. PLoS ONE. doi:10.1371/journal.pone.0116241

    Google Scholar 

  • CLSI document M38-A2 (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved standard. Second edition. Wayne, PA, USA, Clinical and Laboratory Standards Institute. http://shop.clsi.org/site/Sample_pdf/M38A2_sample.pdf.. Accessed on April 2008

  • CLSI document M27-S4 (2012) Method for broth dilution antifungal susceptibility testing of yeasts;Fourth Informational Supplement. Wayne, PA, USA, Clinical and Laboratory Standards Institute. http://shop.clsi.org/site/Sample_pdf/M27S4_sample.pdf. Accessed on December 2015

  • CLSI document M07-A10 (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, Tenth edition. CLSI document M07-A10. Wayne, PA, USA, Clinical and Laboratory Standards Institute. http://shop.clsi.org/site/Sample_pdf/M07A10_sample.pdf Accessed on January 2015

  • De Castro RD, de Souza TM, Bezerra LM, Ferreira GL, Costa EM, Cavalcanti AL (2015) Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study. BMC Complement Altern Med. doi:10.1186/s12906-015-0947-2

    Google Scholar 

  • Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM (2016) Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 38:1015–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri M, Sharifizadeh A, Farhadi M, Yousefi R, Chobert J, Haertlé T, Moosavi-Movahedi A (2011) Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. Lwt-Food Sci Technol 44:2166–2172

    Article  CAS  Google Scholar 

  • Fan X (2014) The antimicrobial activity and mechanism of action of recombinant Ib-AMP4, an antimicrobial peptide from Impatiens balsamina. Dissertation, the Ruperto-Carola University of Heidelberg

  • Fan X, Reichling J, Wink M (2013a) Antibacterial activity of the recombinant antimicrobial peptide Ib-AMP4 from Impatiens balsamina and its synergy with other antimicrobial agents against drug resistant bacteria. Pharmazie 68:628–630

    CAS  PubMed  Google Scholar 

  • Fan X, Schäfer H, Reichling J, Wink M (2013b) Bactericidal properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced as a recombinant fusion-protein in Escherichia coli. Biotechnol J 8:1213–1220

    CAS  PubMed  Google Scholar 

  • Follows D, Holt C, Nylander T, Thomas RK, Tiberg F (2004) Beta-casein adsorption at the silicon oxide-aqueous solution interface: calcium ion effects. Biomacromolecules 5:319–325

    Article  CAS  PubMed  Google Scholar 

  • Ghrairi T, Hani K (2013) Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli O157:H7. J Food Sci Technol 52:2148–2156

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. doi:10.3389/fmicb.2013.00353

    PubMed  PubMed Central  Google Scholar 

  • Hintz T, Matthews KK, Di R (2015) The use of plant antimicrobial compounds for food preservation. Biomed Res Int 2015:246264–246276

    Article  PubMed  PubMed Central  Google Scholar 

  • Irkin R, Esmer OK (2015) Novel food packaging systems with natural antimicrobial agents. J Food Sci Technol 52:6095–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang WS, Kim HK, Lee KY, Kim SA, Han YS, Lee IH (2006) Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett 580:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Klint JK, Senff S, Saez NJ, Seshadri R, Lau HY, Bende NS, Undheim EA, Rash LD, Mobli M, King GF (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS ONE. doi:10.1371/journal.pone.0063865

    PubMed  PubMed Central  Google Scholar 

  • Krishnakumar SS, Li F, Coleman J, Schauder CM, Kümmel D, Pincet F, Rothman JE, Reinisch KM (2015) Re-visiting the trans insertion model for complexin clamping. eLife. doi:10.7554/eLife.04463

    PubMed  PubMed Central  Google Scholar 

  • Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol. doi:10.1046/j.1365-2672.92.5s1.19.x

    Google Scholar 

  • Lora-Tamayo J, Murillo O, Bergen PJ, Nation RL, Poudyal A, Luo X, Yu HY, Ariza J, Li J (2014) Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother 69:2434–2442

    Article  CAS  PubMed  Google Scholar 

  • Malanovic N, Lohner K (2015) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta 1858:936–946

    Article  PubMed  Google Scholar 

  • Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Mania D, Hilpert K, Ruden S, Fischer R, Takeshita N (2010) Screening for antifungal peptides and their modes of action in Aspergillus nidulans. Appl Environ Microbiol 76:7102–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan KV, Rao SS, Gao Y, Atreya CD (2014) Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets. Clin Microbiol Infect 20:39–46

    Article  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Olof S, Anil KS, Marie S (2014) Adsorption of β-casein to hydrophilic silica surfaces. Effect of pH and electrolyte. Food Hydrocoll 36:332–338

    Article  Google Scholar 

  • Pane K, Durante L, Pizzo E, Varcamonti M, Zanfardino A, Sgambati V, Di Maro A, Carpentieri A, Izzo V, Di Donato A, Cafaro V, Notomista E (2016) Rational design of a carrier protein for the production of recombinant toxic peptides in Escherichia coli. PLoS ONE. doi:10.1371/journal.pone.0146552

    Google Scholar 

  • Qiu J, Wang D, Xiang H, Feng H, Jiang Y, Xia L, Dong J, Lu J, Yu L, Deng X (2010) Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS ONE. doi:10.1371/journal.pone.0009736

    Google Scholar 

  • Rai M, Pandit R, Gaikwad S, Kövics G (2016) Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol 53:3381–3394. doi:10.1007/s13197-016-2318-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos M, Beltrán A, Peltzer M, Valente AJM, Garrigós MC (2014) Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT-Food Sci Technol 58:470–477

    Article  CAS  Google Scholar 

  • Rassu G, Nieddu M, Bosi P, Trevisi P, Colombo M, Priori D, Manconi P, Giunchedi P, Gavini E, Boatto G (2014) Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications. Phytomedicine 21:1627–1632

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172–189. doi:10.3389/fmicb.2014.00172

    PubMed  PubMed Central  Google Scholar 

  • Rudilla H, Fusté E, Cajal Y, Rabanal F, Vinuesa T, Viñas M (2016) Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules. doi:10.3390/molecules21091223

    PubMed  Google Scholar 

  • Seesom W, Jaratrungtawee A, Suksamrarn S, Mekseepralard C, Ratananukul P, Sukhumsirichart W (2013) Antileptospiral activity of xanthones from Garcinia mangostana and synergy of gamma-mangostin with penicillin G. BMC Complement Altern Med 13:182–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci 185:936–948

    Article  Google Scholar 

  • Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan A, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33:110–123

    Article  CAS  Google Scholar 

  • Szyk-Warszyńska L, Kilan K, Socha RP (2014) Characterization of casein and poly-L-arginine multilayer films. J Colloid Interface Sci 423:76–84

    Article  PubMed  Google Scholar 

  • Thevissen K, François IE, Sijtsma L, van Amerongen A, Schaaper WM, Meloen R, Posthuma-Trumpie T, Broekaert WF, Cammue BP (2005) Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 26:1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Bang JK, Kim HJ, Kim JK, Kim Y, Shin SY (2009) Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 30:2144–2149

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Shi C, Meng R, Liu Z, Huang Y, Zhao Z, Guo N (2016) Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. J Food Sci Technol 53:2644–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their appreciation for the financial support provided by the University of Tehran and Iranian center of excellence for application of modern technologies for producing functional foods and drinks. We thank also Iran National Science Foundation for funding the above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Razavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

No human or animal subjects were used in this study.

Informed Consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimirad, S., Razavi, S.H., Abtahi, H. et al. Recombinant Production and Antimicrobial Assessment of Beta Casein- IbAMP4 as a Novel Antimicrobial Polymeric Protein and its Synergistic Effects with Thymol. Int J Pept Res Ther 24, 213–222 (2018). https://doi.org/10.1007/s10989-017-9605-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9605-5

Keywords

Navigation