Skip to main content
Log in

Peptido-mimetic Approach in the Design of Syndiotactic Antimicrobial Peptides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Biocompatibility, low toxicity and high selectivity towards bacterial cells has been the hallmark of peptide-based antibiotics. The innate immune system has been employing such molecular systems against invading pathogens as a successful defense strategy. In this study, we attempt to develop topologically constrained antimicrobial peptides with syndiotactic stereochemical arrangement, by incorporating L and D amino acids successively in its amino acid sequence. Acetylated versions of the designed peptides were also examined for its influence on bactericidal potency, against Gram-positive and Gram-negative bacteria. Syndiotactic stereochemical arrangement of the polypeptide main chain mimics stereochemistry of Gramicidin, a naturally occurring antimicrobial peptides. Gramicidin is a class of penta-deca-peptides isolated from soil bacteria Bacillus brevis, but their utility as antibiotic was limited to topical use due to high levels of hemotoxicity. Activity profiles of the four de novo designed peptide variants show higher specificity towards Gram-positive bacteria than Gram-negative variants, matching earlier reports on the therapeutic potential of gramicidin as a broad spectrum antibiotic. Significantly, our hemolytic assay confirms very low (<1%) levels of toxicity for the designed peptides unlike gramicidin. Earlier reports confirm that incorporation of D amino acids effectively negates the possibility of proteolytic degradation, thus pointing to the potential utility of de novo designed peptides with diversified stereochemistry as a promising new approach in the generation of novel antibiotic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

RMSD:

Root mean square deviation

Rg:

Radius of gyration

FE-SEM:

Field emission scanning electron microscopy

MS:

Mass spectrometry

CFU:

Colony forming unit

References

  • Abd-El-Aziz AS, Agatemor C, Etkin N, Overy DP, Lanteigne M, McQuillan K (2015) Antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant bacteria. Biomacromolecules 16(11):3694–3703

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Trivedi V (2012) Extracellular Methemoglobin mediated early ROS spike triggers osmotic fragility and RBC destruction: an Insight into the enhanced hemolysis during malaria. Indian J Clin Biochem 27(2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758(9):1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz BA, Bevins CL, Zasloff MA (1990) Magainins: a new family of membrane-active host defense peptides. Biochem Pharmacol 39(4):625–629

    Article  CAS  PubMed  Google Scholar 

  • Billmeyer FW (1957) Textbook of polymer science, 3rd edn. Inter-science Publishers, New york

    Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Burkhart BM, Li N, Langs DA, Pangborn WA, Duax WL (1998) The conducting form of gramicidin A is a right-handed double-stranded double helix. Proc Natl Acad Sci U S A 95(22):12950–12955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V (1999) Gramicidin D conformation, dynamics and membrane ion transport. Biopolymers 51(2):129–144

    Article  CAS  PubMed  Google Scholar 

  • Chang WK, Wimley WC, Searson PC, Hristova K, Merzlyakov M (2008) Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochim Biophys Acta 1778(10):2430–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary N, Nagaraj R (2011) Impact on the replacement of Phe by Trp in a short fragment of Abeta amyloid peptide on the formation of fibrils. J Pept Sci 17(2):115–123

    Article  CAS  PubMed  Google Scholar 

  • Czihal P, Hoffmann R (2009) Mapping of apidaecin regions relevant for antimicrobial activity and bacterial internalization. Int J Pept Res Ther 15:157–164

    Article  CAS  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17(1):134–143

    Article  CAS  PubMed  Google Scholar 

  • Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37

    Article  CAS  PubMed  Google Scholar 

  • Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864(10):1372–1401

    Article  CAS  PubMed  Google Scholar 

  • Durani S (2008) Protein design with L- and D-alpha-amino acid structures as the alphabet. Acc Chem Res 41(10):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Eloff J (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64(08):711–713

    Article  CAS  PubMed  Google Scholar 

  • Falcao LL, Silva-Werneck JO, Ramos AdR, Martins NF, Bresso E, Rodrigues MA (2016) Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin. Peptides 79:75–82

    Article  CAS  PubMed  Google Scholar 

  • Felicio MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5(5):1–9

    Google Scholar 

  • Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2002) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol 46(11):741–749

    Article  CAS  PubMed  Google Scholar 

  • Hazam PK, Jerath G, Kumar A, Chaudhary N, Ramakrishnan V (2017) Effect of tacticity-derived topological constraints in bactericidal peptides. Biochim Biophys Acta 1859(2017):1388–1395

    Article  CAS  PubMed  Google Scholar 

  • Hladky SB, Haydon DA (1972) Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta 274(2):294–312

    Article  CAS  PubMed  Google Scholar 

  • Katsaras J, Prosser RS, Stinson RH, Davis JH (1992) Constant helical pitch of the gramicidin channel in phospholipid bilayers. Biophys J 61(3):827–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768(9):2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Khoury GA, Smadbeck J, Kieslich CA, Floudas CA (2014) Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol 32(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Killian JA, Prasad KU, Hains D, Urry DW (1988) The membrane as an environment of minimal interconversion. A circular dichroism study on the solvent dependence of the conformational behavior of gramicidin in diacylphosphatidylcholine model membranes. BioChemistry 27(13):4848–4855

    Article  CAS  PubMed  Google Scholar 

  • Koh J-J, Lin S, Aung TT, Lim F, Zou H, Bai Y (2015) Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant gram-positive bacterial infections. J Med Chem 58(2):739–752

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ramakrishnan V, Ranbhor R, Patel K, Durani S (2009) Homochiral stereochemistry: the missing link of structure to energetics in protein folding. J Phys Chem B 113(51):16435–16442

    Article  CAS  PubMed  Google Scholar 

  • Lee M-R, Raman N, Gellman SH, Lynn DM, Palecek SP (2014) Hydrophobicity and helicity regulate the antifungal activity of 14-helical β-peptides. ACS Chem Biol 9(7):1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z (2012) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu S, Koh J-J, Zou H, Lakshminarayanan R, Bai Y (2015) A novel fragment based strategy for membrane active antimicrobials against MRSA. Biochim Biophys Acta 1848(4):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • LoGrasso PV, Moll F, Cross TA (1988) Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers. Biophys J 54(2):259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MATLAB version 7.10.0. (2010) Natick Massachusetts: The MathWorks Inc

  • Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Nanda V, Andrianarijaona A, Narayanan C (2007) The role of protein homochirality in shaping the energy landscape of folding. Protein Sci 16(8):1667–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piaru SP, Mahmud R, Perumal S (2012) Determination of antibacterial activity of essential oil of Myristica fragrans Houtt. Using tetrazolium microplate assay and its cytotoxic activity against vero cell line. Int J Pharmacol 8(6):572–576

    Article  Google Scholar 

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan V, Ranbhor R, Durani S (2005) Simulated folding in polypeptides of diversified molecular tacticity: implications for protein folding and de novo design. Biopolymers 78(2):96–105

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan V, Ranbhor R, Kumar A, Durani S (2006) The link between sequence and conformation in protein structures appears to be stereochemically established. J Phys Chem B 110(18):9314–9323

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan V, Srinivasan SP, Salem SM, Matthews SJ, Colón W, Zaki M (2012) GeoFold: topology-based protein unfolding pathways capture the effects of engineered disulfides on kinetic stability. Proteins 80(3):920–934

    Article  CAS  PubMed  Google Scholar 

  • Ranbhor R, Ramakrishnan V, Kumar A, Durani S (2006) The interplay of sequence and stereochemistry in defining conformation in proteins and polypeptides. Biopolymers 83(5):537–545

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran G, Kumaresan V, Bhatt P, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) A cumulative strategy to predict and characterize antimicrobial peptides (AMPs) from protein database. Int J Pept Res Ther 23:281–290

    Article  CAS  Google Scholar 

  • Rufian-Henares JA, Morales FJ (2011) Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food Chem 111(4):1069–1074

    Article  Google Scholar 

  • Saikia K, Sravani YD, Ramakrishnan V, Chaudhary N (2017) Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB. Sci Rep 7:42994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(19):3596–3607

    Article  CAS  Google Scholar 

  • Srinivasan R (2013) Ribosome–program to build coordinates for peptides from sequence. http://folding.chemistry.msstate.edu/~raj/Manuals/ribosome.html

  • Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of Strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53(2):593–602

    Article  PubMed  Google Scholar 

  • Tene N, Bonnafe E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I (2016) Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides 79(:):103–113

    Article  CAS  PubMed  Google Scholar 

  • Urry DW (1971) The gramicidin A transmembrane channel: a proposed pi(L, D) helix. Proc Natl Acad Sci U S A 68(3):672–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ishii Y (2012) Revealing protein structures in solid-phase peptide synthesis by 13 C solid-state NMR: evidence of excessive misfolding for alzheimer’s β. J Am Chem Soc 134(6):2848–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Qin L, Pace CJ, Wong P, Malonis R, Gao J (2012) Solubilized gramicidin A as potential systemic antibiotics. Chembiochem 13(1):51–55

    Article  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D (2008) Drug Bank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database issue):D901–D906

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang Z, Li X, Fan Y, He G, Wan Y (2014) In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 58(9):5342–5349

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong YQ, Mukhopadhyay K, Yeaman MR, Adler-Moore J, Bayer AS (2005) Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3114–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issue Mol Biol 7(2):179–196

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Central Instrument Facility IIT Guwahati, Ms. Sajitha Sashidharan, Ms. Ruchika Goyal for their contributions in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibin Ramakrishnan.

Ethics declarations

Funding Sources

This study was jointly funded by Department of Biotechnology, Govt. of India (Grant No. BT/350/NE/TBP/2012) and Indian Institute of Technology Guwahati, India.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 747 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazam, P.K., Jerath, G., Chaudhary, N. et al. Peptido-mimetic Approach in the Design of Syndiotactic Antimicrobial Peptides. Int J Pept Res Ther 24, 299–307 (2018). https://doi.org/10.1007/s10989-017-9615-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9615-3

Keywords

Navigation