Skip to main content
Log in

In silico designing of peptide inhibitors against pregnane X receptor: the novel candidates to control drug metabolism

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Drug-induced pregnane X receptor (PXR) activation may be unavoidable with some treatments. Besides, drug-induced PXR activation may lead to drug interactions with a number of treatments. Human PXR antagonists represent a means to counteract such interactions. Indeed, the ideal small molecule would have good drug-like properties, but be devoid of nonspecific cell-target effects and ability to induce cytotoxicity. Researchers assess on the possibility of deriving inhibitory peptides, which are derived from interfaces of “protein–protein interactions” (PPIs) could inhibit interactions of their origin domain by mimicking its mode of binding to cognate partners. Such peptides could serve as promising leads for rational design of inhibitory drugs. In this study, In silico designing of peptide inhibitors and peptidomimetics against PPIs was done to prevent unwanted drug metabolisms caused by PXR activation. In sum, no designed peptides had considerable higher energy of interactions and more H-bonds with the receptor compared to the SRC-1 peptides. Hence, none of the designed peptides are predicted to be more active against the target receptor. However, compared to the SRC-1 peptide, a designed peptidomimetic (mimetic3) had considerable higher energy of interactions with the receptor. It formed five H-bonds with PXR that was equal to the number of H-bonds that SRC-1 formed with the receptor. Therefore, by designing such mimetics, it would be probable to have a realistic chance of achieving peptides with improved binding affinity compared to SRC-1 and consequently prevent the unwanted drug metabolisms caused by PXR activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angamuthu K, Piramanayagam S (2017) Evaluation of In silico protein secondary structure prediction methods by employing statistical techniques. Biomed Biotechnol Res J 1:29–36

    Article  Google Scholar 

  • Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein–peptide docking including receptor flexibility. Proteins 78(5):1084–1104

    Article  PubMed  CAS  Google Scholar 

  • Beard H, Cholleti A, Pearlman D, Sherman W, Loving KA (2013) Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein–protein complexes. PLoS ONE 8(12):e82849. doi:10.1371/journal.pone.0082849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertilsson G, Heidrich J, Svensson K, Åsman M, Jendeberg L, Sydow-Bäckman M et al (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 95:12208–12213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chodera JD, Mobley DL (2013) Entropy–enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 42:121–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cudic P, Stawikowski M (2007) Pseudopeptide synthesis via Fmoc solid-phase synthetic methodology Mini-Rev. Org Chem 4(4):268–280

    CAS  Google Scholar 

  • di Masi A, De Marinis E, Ascenzi P, Marino M (2009) Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Aspects Med 30:297–343

    Article  PubMed  CAS  Google Scholar 

  • Ekins S, Kholodovych V, Ai N, Sinz M, Gal J, Gera L et al (2008) Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol 74:662–672

    Article  PubMed  CAS  Google Scholar 

  • Farhadi T, Nezafat N, Ghasemi Y (2015a) In silico phylogenetic analysis of Vibrio cholera isolates based on three housekeeping genes. Int J Comput Biol Drug Des 8(1):62–74

    Article  PubMed  Google Scholar 

  • Farhadi T, Nezafat N, Ghasemi Y, Karimi Z, Hemmati S, Erfani N (2015b) Designing of complex multi-epitope peptide vaccine based on Omps of Klebsiella pneumoniae: an in silico approach. Int J Pept Res Ther 21(3):325–341

    Article  CAS  Google Scholar 

  • Farhadi T, Fakharian A, Ovchinnikov RS (2017) Virtual screening for potential inhibitors of CTX-M-15 protein of Klebsiella pneumonia. Interdiscip Sci Comput Life Sci. doi 10.1007/s12539-017-0222-y

    Article  Google Scholar 

  • Goodman M, Felix A, Moroder L, Toniolo C (eds) (2003) Synthesis of peptides and peptidomimetics (4th). Thieme, Stuttgart

  • Gupta D, Venkatesh M, Wang H, Kim S, Sinz M, Goldberg GL et al (2008) Expanding the roles for pregnane X receptor (PXR) in cancer: proliferation and drug resistance in ovarian cancer. Clin Cancer Res 14(17):5332–5340

    Article  PubMed  CAS  Google Scholar 

  • Hao B (2013) Computationally designed peptide inhibitors against the ubiquitin E3 ligase SCF Fbx4. Articles—research paper 233. http://digitalcommons.uconn.edu/uchcres_articles/233

  • Karle IL (1996) Flexibility in peptide molecules and restraints imposed by hydrogen bonds. AiB Residue Core Inserts Biopolym 40(1):157–180

    CAS  Google Scholar 

  • Kumar-Pathak M, Vibhu-Jha V, Kumar-Jain N, Shrivastava N, Yadav N, Purukayastha D (2015) Review on peptidomimetics: a drug designing tool. Indo Am J Pharm Res 5(12):3859–3867

    Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Redinbo MR, Venkatesh M, Ekins S, Chaudhry A, Bloch N et al (2013) Novel yeast-based strategy unveils antagonist binding regions on the nuclear xenobiotic receptor PXR. Biol Chem 288(19):13655–13668

    Article  CAS  Google Scholar 

  • London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein–protein interactions? Proteins 78(15):3140–3149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith AB et al (2005) Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin Cancer Res 11:6359–6369

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Schwabe JWR (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324

    Article  PubMed  CAS  Google Scholar 

  • Navaratnarajah P, Steele BL, Redinbo MR, Thompson NL (2012) Rifampicin-independent interactions between the pregnane X receptor ligand binding domain and peptide fragments of coactivator and corepressor proteins. BioChemistry 51(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6:e24657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubinstein M, Niv MY (2009) Peptidic modulators of protein–protein interactions: progress and challenges in computational design. Biopolymers 91(7):505–513

    Article  PubMed  CAS  Google Scholar 

  • Sacquin-Mora S, Prévost C (2015) Docking peptides on proteins: how to open a lock, in the dark, with a flexible key. Structure. doi:10.1016/j.str.2015.07.004

    Article  PubMed  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275(5302):983–986

    Article  PubMed  CAS  Google Scholar 

  • Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR (2002) Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 323(3):491–501

    Article  PubMed  CAS  Google Scholar 

  • Slivka PF, Shridhar M, Lee GI, Sammond DW, Hutchinson MR, Martinko AJ et al (2009) A peptide antagonist of the TLR4-MD2 interaction. Chembiochem 10(4):645–649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN et al (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6(6):2351–2366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J et al (2010) PepX: a structural database of non-redundant protein–peptide complexes. Nucleic Acids Res 38:D545–D551

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Yadav M, Pradhan D, Bhuyan R, Aggarwal Sh, Nayek A et al (2016) Probing binding mechanism of interleukin-6 and olokizumab: in silico design of potential lead antibodies for autoimmune and inflammatory diseases. J Recept Signal Transduct. doi:10.3109/10799893.2016.1147584

    Article  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1–2):40–56

    Article  PubMed  CAS  Google Scholar 

  • Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP (2001) Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides 22(12):2329–2343

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Poulton EJ, Grun F, Bammler TK, Blumberg B, Thummel KE, Eaton DL (2007) The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 71:220–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Farhadi.

Ethics declarations

Conflict of interest

Tayebeh Farhadi declares that she has no conflict of interest.

Research involving with Human and Animals Rights

This article does not contain any studies with human participants or animals performed by the author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 463 KB)

Supplementary material 2 (DOCX 250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, T. In silico designing of peptide inhibitors against pregnane X receptor: the novel candidates to control drug metabolism. Int J Pept Res Ther 24, 409–420 (2018). https://doi.org/10.1007/s10989-017-9627-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9627-z

Keywords

Navigation