Skip to main content

Advertisement

Log in

Bioactive Peptides from Marine Ascidians and Future Drug Development–A Review

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Marine ascidians are considered as one of the richest sources of bioactive compounds. The extraction and utilization of marine peptides have been attracted much attention owing to their potential health benefits. Most of the bioactive compounds from marine ascidians are already in different phases of the clinical and preclinical pipeline. They can be used in different functional and nutraceutical values due to their antineoplastic, antihypertensive, antioxidant, and antimicrobial properties. The screening in vivo and in vitro bioassays are coupled to the purification process for the exploration of its biological interest which is of great value. The growing significance to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs and other drugs are in clinical/pre-clinical trials. The present review highlights the recent research progress in marine ascidians’ peptides and its prospects for the future pharmaceutical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B 803(1):41–53

    Article  CAS  Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1990) Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 29(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Bhat ZF, Kumar S, Bha HF (2015) Bioactive peptides of animal origin: a review. J Food Sci Technol 52(9):5377–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, D’Incalci M (2003) Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia 17:52–59

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Bowden BF, Coll JC, Hockless DC, Skelton BW, White AH (1994) Studies of Australian ascidians. IV. Mollamide, a cytotoxic cyclic heptapeptide from the compound ascidian Didemnum molle. Aust J Chem 47(1):616–619

    Article  Google Scholar 

  • Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317(9):1261–1269. https://doi.org/10.1016/j.yexcr.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Cheung RCF, Ng TB, Wong JH (2015) Marine peptides: bioactivities and applications. Mar Drugs 13:4006–4043. https://doi.org/10.3390/md13074006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destoumieux D, Bulet P, Loewi D, Dorsselaeri AV, Rodriguez J, Bachere E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  CAS  PubMed  Google Scholar 

  • Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, Hamann MT (2008) Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod 71(6):941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edler MC, Fernandez AM, Lassota P, Ireland CM, Barrows LR (2002) Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem Pharmacol 63(4):707–715

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Do T, Schmitz FJ, Andrusevich V, Engel MH (1998) New cyclic peptides from the ascidian Lissoclinum patella. J Nat Prod 61(12):1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Galinier R, Roger E, Sautiere PE, Aumelas A, Banaigs B, Mitta G (2009) Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J Pept Sci 15(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Gross H (2009) Genomic mining: a concept for the discovery of new bioactive natural products. Curr Opin Drug Discov Dev 12(2):207–219

    CAS  Google Scholar 

  • Grosso C, Valentão P, Ferreres F, Andrade PB (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar drugs 13(5):3182–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán F, Barberis S, Illanes A (2006) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):280–314

    Google Scholar 

  • Hamada Y, Shioiri T (2005) Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev 105(12):4441–4482

    Article  CAS  PubMed  Google Scholar 

  • Hamed I, Özogul F, Özogul Y, Hamed I, Özogul F, Özogul Y, Regenstein JM (2015) Marine bioactive compounds and their health benefits: a review. Compr Rev Food Sci Food Saf 14(4):446–465

    Article  CAS  Google Scholar 

  • Jo C, Khan FF, Khan MI, Iqbal J (2017) Marine bioactive peptides: types, structures, and physiological functions. Food Rev Int 33(1):44–61

    Article  CAS  Google Scholar 

  • Ko SC, Kim JI, Park SJ, Jung WK, Jeon YJ (2016) Antihypertensive peptide purified from Styela clava flesh tissue stimulates glucose uptake through AMP-activated protein kinase (AMPK) activation in skeletal muscle cells. Eur Food Res Technol 242(2):163–170

    Article  CAS  Google Scholar 

  • Kumar TR, Soppimath K, Nachaegari SK (2006) Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol 7(4):261–276

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102(10):5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Cho Y, Lehrer RI (1997) Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 65(7):2898–2903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IH, Lee YS, Kim CH, Kim CR, Hong T, Menzel L, Boo LM, Pohl J, Sherman MA, Waring A, Lehrer RI (2001) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim Biophys Acta 1527(3):141–148

    Article  CAS  PubMed  Google Scholar 

  • Lemes AC, Sala L, Ores JC, Braga ARC, Egea ME, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950. https://doi.org/10.3390/ijms17060950

    Article  PubMed Central  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80(2):260–267

    Article  CAS  PubMed  Google Scholar 

  • Li W, Tailhades J, O’Brien-Simpson NM, Separovic F, Otvos L Jr, Hossain MA, Wade JD (2014) Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids 46(10):2287–2294

    Article  CAS  PubMed  Google Scholar 

  • Lindequist U (2016) Marine-derived pharmaceuticals–challenges and opportunities. Biomol Ther 24(6):561

    Article  CAS  Google Scholar 

  • Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520

    Article  CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magana MD, Segura-Campos M, Dávila-Ortiz G, Betancur-Ancona D, Chel-Guerrero L (2015) ACE-I inhibitory properties of hydrolysates from germinated and ungerminated Phaseolus lunatus proteins. Food Sci Technol 35(1):167–174

    Article  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar drugs 12(2):1066–1101

    Article  PubMed  PubMed Central  Google Scholar 

  • Menna M, Fattorusso E, Imperatore C (2011) Alkaloids from marine ascidians. Molecules 16(10):8694–8732

    Article  CAS  Google Scholar 

  • Palanisamy SK, Giacobbe S, Sundaresan U (2015) Marine ascidians potential source for new class of anti-cancer drugs. World J Pharm Pharm Sci 4(8):474–485

    Google Scholar 

  • Perez LJ, Faulkner DJ (2003) Bistratamides E–J, modified cyclic hexapeptides from the Philippines ascidian Lissoclinum bistratum. J Nat Prod 66(2):247–250

    Article  CAS  PubMed  Google Scholar 

  • Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Souza Cruz R, Medeiros A, Antonio E (2012) Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 11(2):187–204

    Article  Google Scholar 

  • Pérez-Victoria I, Martín J, Reyes F (2016) Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Medica 82(09/10):857–871

    Article  PubMed  Google Scholar 

  • Pihlanto-Leppälä A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11(9):347–356

    Article  Google Scholar 

  • Ribrag V, Caballero D, Fermé C, Zucca E, Arranz R, Briones J, Gisselbrecht C, Salles G, Gianni AM, Gomez H, Kahatt C (2013) Multicenter phase II study of plitidepsin in patients with relapsed/refractory non-Hodgkin’s lymphoma. Haematologica 98(3):357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz FJ, Bowden BF, Toth SI, Attaway DH, Zaborsky OR (1993a) Marine biotechnology, vol 1, pharmaceutical and bioactive natural products. Plenum Press, New York, p 277

    Google Scholar 

  • Schmitz FJ, Bowden BF, Toth SI, Attaway DH, Zaborsky OR (1993b) Marine biotechnology, vol 1, pharmaceutical and bioactive natural products. Plenum Press, New York, p 270

    Google Scholar 

  • Schwartsmann G, da Rocha AB, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet Oncol 2(4):221–225

    Article  CAS  PubMed  Google Scholar 

  • Sewald N, Jakubke H (2002) Peptides: chemistry and biology. Wiley, Weinheim, p 543

    Book  Google Scholar 

  • So JE, Kang SH, Kim BG (1998) Lipase-catalyzed synthesis of peptides containing D-amino acid. Enzym Microb Technol 23(3):211–215

    Article  CAS  Google Scholar 

  • Stoye A, Nagalingam G, Britton WJ, Payne RJ (2016) Synthesis of norfijimycin A with activity against Mycobacterium tuberculosis. Aust J Chem 70(2):229–232

    Article  Google Scholar 

  • Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM (2012) Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 10:963–986. https://doi.org/10.3390/md1005096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SW, Craig AG. Fisher WH, Park WH, Lehrer MRI, RI (2000) Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275:38417

    Article  CAS  PubMed  Google Scholar 

  • Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer R (2003) Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278(15):13546–13553

    Article  CAS  PubMed  Google Scholar 

  • Torchilin V (2008) Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol 5(2–3):e95–e103. https://doi.org/10.1016/j.ddtec.2009.01.002

    Article  PubMed  Google Scholar 

  • Ulrike L (2016) Marine-derived pharmaceuticals - Challenges and opportunities. Biomol Ther (Seoul) 24(6):561–571

    Article  Google Scholar 

  • Urda C, Fernández R, Rodríguez J, Pérez M, Jiménez C, Cuevas C (2017) Bistratamides M and N, oxazole-thiazole containing cyclic hexapeptides isolated from Lissoclinum bistratum interaction of zinc (II) with bistratamide K. Mar Drugs 15(7):209

    Article  PubMed Central  Google Scholar 

  • Vervoort H, Fenical W, Epifanio RD (2000) Tamandarins A and B: new cytotoxic depsipeptides from a Brazilian ascidian of the family Didemnidae. J Org Chem 65(3):782–792

    Article  CAS  PubMed  Google Scholar 

  • Wipf P, Miller CP, Venkatraman S, Fritch PC (1995) Thiolysis of oxazolines: a new, selective method for the direct conversion of peptide oxazolines into thiazolines. Tetrahedron Lett 36(36):6395–6398

    Article  CAS  Google Scholar 

  • Wyche TP, Hou Y, Vazquez-Rivera E, Braun D, Bugni TS (2012) Peptidolipins B–F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J Nat Prod 75(4):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Department of Science and Technology-Science and Engineering Research board (DST-SERB), India (SB/YS/LS-374/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umamaheswari Sundaresan.

Ethics declarations

Conflict of interest

All the authors declare that no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, V., Venkatesan, M., Ramachandran, S. et al. Bioactive Peptides from Marine Ascidians and Future Drug Development–A Review. Int J Pept Res Ther 24, 13–18 (2018). https://doi.org/10.1007/s10989-017-9662-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9662-9

Keywords

Navigation