Skip to main content
Log in

Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are a crucial part of innate immunity that exist in the most of living organisms. In fact, AMPs have ability to incite the innate immune response and combat with a broad range of microbes, including bacteria, virus, parasite and fungi. Moreover, recent studies indicated that, the small cationic peptides have ability to target cancer cells and can be used as the cancer therapeutic agents. AMPs are the very tiny macromolecules, commonly in the range of 6 to 100 amino acids. During last decades with the growing antibiotic resistance, AMPs have gained considerable attention because of potential application to combat multidrug-resistant microorganisms. Therefore, herein we aimed to review the features of antibacterial peptides, including their classification, structure, source, mechanism of action and clinical application. Furthermore, problems in the production of recombinant peptides and also newest researches in the clinical developments of AMPs for treatment of crucial diseases; particularly cancers will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarghooi F, Babaeipour V, Memary HR, Mofid M (2012) Overproduction bacteriorhodopsin in E. coli as pharmacological targets. Res Pharm Sci 7:473

  • Akef HM (2019) Anticancer and antimicrobial activities of scorpion venoms and their peptides. Toxin Rev 38:41–53

    CAS  Google Scholar 

  • Al Saiqali M, Tangutur AD, Banoth C, Bhukya B (2018) Antimicrobial and anticancer potential of low molecular weight polypeptides extracted and characterized from leaves of Azadirachta indica. Int J Biol Macromol 114:906–921

    CAS  PubMed  Google Scholar 

  • Alex JM et al (2019) Calixarene-mediated assembly of a small antifungal protein. IUCrJ 6:238–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almaaytah A, Albalas Q (2014) Scorpion venom peptides with no disulfide bridges: a review. Peptides 51:35–45

    CAS  PubMed  Google Scholar 

  • Andreev K et al (2016) Cyclization improves membrane permeation by antimicrobial peptoids. Langmuir 32:12905–12913

    CAS  PubMed  Google Scholar 

  • Ankaiah D, Palanichamy E, Antonyraj CB, Ayyanna R, Perumal V, Ahamed SIB, Arul V (2018) Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int J Biol Macromol 116:502–512

    CAS  PubMed  Google Scholar 

  • Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M (2018) Peptide-based targeted therapeutics: focus on cancer treatment. J Control Release 292:141–162

    CAS  PubMed  Google Scholar 

  • Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, Vogel HJ (2016) Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 95:91–98

    PubMed  Google Scholar 

  • Ashby M, Petkova A, Gani J, Mikut R, Hilpert K (2017) Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr Top Med Chem 17:537–553

    CAS  PubMed  Google Scholar 

  • Babaeipour V, Shojaosadati SA, Khalilzadeh R, Maghsoudi N, Tabandeh F (2008) A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 49:141–147

    CAS  PubMed  Google Scholar 

  • Babič J et al (2019) Correction to: SPEXOR: design and development of passive spinal exoskeletal robot for low back pain prevention and vocational reintegration. SN Appl Sci 1:454

    Google Scholar 

  • Baird P (2017) The role of genetics in population health. Why are some people healthy and others not? Routledge, New York, pp 133–160

    Google Scholar 

  • Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N, Tahzibi A (2014) Down regulation of ackA-pta pathway in Escherichia coli BL21 (DE3): a step toward optimized recombinant protein expression system. Jundishapur J Microbiol 7:e8990

    PubMed  PubMed Central  Google Scholar 

  • Bayer A et al (2017) The antimicrobial peptide human beta-defensin-3 is induced by platelet-released growth factors in primary keratinocytes. Mediat Inflamm 2017:6157491

    Google Scholar 

  • Beaglehole R, Bonita R, Magnusson R (2011) Global cancer prevention: an important pathway to global health and development. Public Health 125:821–831

    CAS  PubMed  Google Scholar 

  • Bechinger B (2011) Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci 17:306–314

    CAS  PubMed  Google Scholar 

  • Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z (2017) Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. J Fungi 3:46

    Google Scholar 

  • Brogden KA, Bates AM, Fischer CL (2016) Antimicrobial peptides in host defense: functions beyond antimicrobial activity. Antimicrobial peptides. Springer, Cham, pp 129–146

    Google Scholar 

  • Cao Y, Hinkle GJ, Slater SC, Chen X, Goldman BS (2017) Expression of microbial proteins in plants for production of plants with improved properties. US Patent App. 15/612,580

  • Cardoso MH, Oshiro KG, Rezende SB, Cândido ES, Franco OL (2018) The structure/function relationship in antimicrobial peptides: what can we obtain from structural data? Advances in protein chemistry and structural biology, vol 112. Elsevier, Amsterdam, pp 359–384

    Google Scholar 

  • Chang C et al (2017) Human β-defensin 2 in primary sclerosing cholangitis. Clin Transl Gastroenterol 8:e80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-L, Su P-Y, Kuo S-C, Lauderdale T-LY, Shih C (2018) Adding a C-terminal cysteine (CTC) can enhance the bactericidal activity of three different antimicrobial peptides. Front Microbiol 9:1440

    PubMed  PubMed Central  Google Scholar 

  • Chen Q et al (2019) Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis. Proc Natl Acad Sci USA 116:3161–3170

    CAS  PubMed  Google Scholar 

  • Chen W, Cheng X, Zhang X, Zhang Q, Sun H, Huang W, Xie Z (2015) The expression features of serum Cystatin C and homocysteine of Parkinson’s disease with mild cognitive dysfunction. Eur Rev Med Pharmacol Sci 19:2957–2963

    PubMed  Google Scholar 

  • Cid-Uribe JI, Santibáñez-López CE, Meneses EP, Batista CV, Jiménez-Vargas JM, Ortiz E, Possani LD (2018) The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 151:47–62

    CAS  PubMed  Google Scholar 

  • Conde R, Zamudio FZ, Rodrı́guez MH, Possani LD (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 471:165–168

    CAS  PubMed  Google Scholar 

  • de la Salud Bea R, Petraglia AF, de Johnson LEL (2015) Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon 101:79–84

    Google Scholar 

  • Dehaghani SA, Babaeipour V, Mofid M, Divsalar A, Faraji F (2010) An efficient purification method for high recovery of recombinant human granulocyte colony stimulating factor from recombinant E. coli. Int J Environ Sci Dev 1:111–114

    Google Scholar 

  • Del Vecchio K, Stahelin RV (2018) Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 50:1–10

    PubMed  PubMed Central  Google Scholar 

  • Doğan T, İğci N, Biber A, Gerekci S, Hüsnügil HH, Izbirak A, Özen C (2018) Peptidomic characterization and bioactivity of Protoiurus kraepelini (Scorpiones: Iuridae) venom. Turk J Biol 42:490–497

    Google Scholar 

  • Dziuba B, Dziuba M (2014) New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies. Int J Mol Sci 15:14531–14545

    PubMed  PubMed Central  Google Scholar 

  • Ebrahimi F, Rasaee MJ, Mousavi SL, Babaeipour V (2010) Production and characterization of a recombinant chimeric antigen consisting botulinum neurotoxin serotypes A, B and E binding subdomains. J Toxicol Sci 35:9–19

    CAS  PubMed  Google Scholar 

  • Fakheri BA, Jabbari M (2014) Small but potent killers

  • Feng J et al (2013) Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus. Protein Expr Purif 88:127–133

    CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  • Gaglione R et al (2019) Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 51:39–48

    CAS  PubMed  Google Scholar 

  • Gaspar D, Castanho MA (2016) Anticancer peptides: prospective innovation in cancer therapy. Host defense peptides and their potential as therapeutic agents. Springer, Cham, pp 95–109

    Google Scholar 

  • Gaur R, Singh A, Tripathi A, Singh R (2017) Bioreactors. Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 233–272

    Google Scholar 

  • Gerner RR, Raffatellu M (2018) A worm’s gut feelings: neuronal muscarinic and epithelial canonical Wnt pathways promote antimicrobial defense. Immunity 48:839–841

    CAS  PubMed  Google Scholar 

  • Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep 4:528–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321

    CAS  PubMed  Google Scholar 

  • Harder J, Schröder J-M (2016) Antimicrobial peptides. Springer, Cham

    Google Scholar 

  • Harmouche N et al (2017a) Solution and solid-state nuclear magnetic resonance structural investigations of the antimicrobial designer peptide GL13K in membranes. Biochemistry 56:4269–4278

    CAS  PubMed  Google Scholar 

  • Harmouche N et al (2017b) Solution and solid-state NMR structural investigations of the antimicrobial designer peptide GL13K in membranes. Biochemistry 56:4269–4278

    CAS  PubMed  Google Scholar 

  • Harrison RG, Todd P, Rudge SR, Petrides DP (2015) Bioseparations science and engineering. Topics in chemical engineering. Oxford University Press, Oxford

  • Hemler ME, Weitzman JB, Pasqualini R, Kawaguchi S, Kassner PD, Berdichevsky FB (1995) Structure, biochemical properties, and biological functions of integrin cytoplasmic domains. In: Integrins: the biological problems, pp 1–35. https://doi.org/10.1201/9780203711644-1

  • Hilchie A, Hoskin D, Coombs MP (2019) Anticancer activities of natural and synthetic peptides. Antimicrobial peptides. Springer, Cham, pp 131–147

    Google Scholar 

  • Hmed B, Serria HT, Mounir ZK (2013) Scorpion peptides: potential use for new drug development. J Toxicol 2013:958797

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Feng Q, Yan Q, Hao X, Chen Y (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15:73–81

    CAS  PubMed  Google Scholar 

  • Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5:631–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulett MD, Lay FT (2017) Plant defensins and use in the treatment of proliferative diseases. Google Patents

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglic A, Kulkarni CV (2014) Advances in planar lipid bilayers and liposomes, vol 20. Elsevier, New York

    Google Scholar 

  • Ingber D, Super M, Leslie DC, Didar T, Watters AL, Berthet JB, Waterhouse A (2013) Modification of surfaces for simultaneous repellency and targeted binding of desired moieties. Google Patents

  • Jacob B, Rajasekaran G, Kim EY, Park I-S, Bang J-K, Shin SY (2016) The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity. Amino Acids 48:1241–1251

    CAS  PubMed  Google Scholar 

  • Jafari S et al (2014) Recombinant production of mecasermin in E. coli expression system. Res Pharm Sci 9:453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JA et al (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63

    CAS  PubMed  Google Scholar 

  • Jossen V, Eibl R, Pörtner R, Kraume M, Eibl D (2017) Stirred bioreactors: current state and developments, with special emphasis on biopharmaceutical production processes. Current developments in biotechnology and bioengineering. Elsevier, New York, pp 179–215

    Google Scholar 

  • Juretić D, Vukičević D, Tossi A (2017) Tools for designing amphipathic helical antimicrobial peptides. Methods Mol Biol 1548:23–34

    PubMed  Google Scholar 

  • Kahaki FA, Babaeipour V, Memari HR, Mofid MR (2014) High overexpression and purification of optimized bacterio-opsin from Halobacterium salinarium R1 in E. coli. Appl Biochem Biotechnol 174:1558–1571

    CAS  PubMed  Google Scholar 

  • Kastin A (2013) Handbook of biologically active peptides. Academic, Amsterdam

    Google Scholar 

  • Kautz L, Aschemeyer S, Gabayan V, Ganz T, Nemeth E (2016) Erythroferrone regulates hepcidin expression independently of matriptase 2. Am J Hematol 92:E61–E63

    Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Google Scholar 

  • Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS (2016) Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J 24:515–524

    PubMed  Google Scholar 

  • Kolyada V (2019) On Cèsaro and Copson norms of nonnegative sequences. Ukr’ kyi Mat Z 71:220–229

    Google Scholar 

  • Kornspan JD, Rottem S (2012) The phospholipid profile of mycoplasmas. J Lipids. https://doi.org/10.1155/2012/640762

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovács R et al (2019) In vivo applicability of Neosartorya fischeri antifungal protein 2 (NFAP2) in treatment of vulvovaginal candidiasis. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01777-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauson AJ (2011) Mechanisms of pore formation in membranes. Tulane University

  • Kumar P, Kizhakkedathu J, Straus S (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:4

    PubMed Central  Google Scholar 

  • Li J-F et al (2017) Identification of a cyclodextrin inclusion complex of antimicrobial peptide CM4 and its antimicrobial activity. Food Chem 221:296–301

    CAS  PubMed  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    CAS  PubMed  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215

    CAS  PubMed  Google Scholar 

  • Lohner K (2017) Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr Top Med Chem 17:508–519

    CAS  PubMed  Google Scholar 

  • Ma JL et al (2019) Effects of dietary supplementation of recombinant plectasin on growth performance, intestinal health and innate immunity response in broilers. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-019-9515-2

    Article  PubMed  Google Scholar 

  • Maghsoudi N, Bakhtiari N, Mirshahi M, Babaeepour V (2009) Effect of antisense nucleotide against acetate production on recombinant beta interferon production by E. coli. N Biotechnol. https://doi.org/10.1016/j.nbt.2009.06.451

    Article  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    PubMed  PubMed Central  Google Scholar 

  • Manchisi J, Mhandu TJ, Kane J, Ndlovu S (2019) A hybrid leaching process to enhance the dissolution of cupriferous micas in the Chingola refractory ore. Hydrometallurgy 186:151–161

    CAS  Google Scholar 

  • Mander L, Liu H-W (2010) Comprehensive natural products II: chemistry and biology, vol 1. Elsevier, Oxford

    Google Scholar 

  • Martin GE et al (2017) Sphingosine’s role in epithelial host defense: a natural antimicrobial and novel therapeutic. Biochimie 141:91–96

    CAS  PubMed  Google Scholar 

  • Medeiros-Silva J, Jekhmane S, Breukink E, Weingarth M (2019) Towards the native binding modes of Lipid II targeting antibiotics. ChemBioChem 20:1731–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrlatifan S, Mirnurollahi SM, Motevalli F, Rahimi P, Soleymani S, Bolhassani A (2016) The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model. Drug Deliv 23:2852–2859

    CAS  PubMed  Google Scholar 

  • Meng S, Xu H, Wang F (2010) Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr Protein Pept Sci 11:264–273

    CAS  PubMed  Google Scholar 

  • Miao J et al (2015) iTRAQ-based quantitative proteomic analysis of the antimicrobial mechanism of peptide F1 against Escherichia coli. J Agric Food Chem 63:7190–7197

    CAS  PubMed  Google Scholar 

  • Midura-Nowaczek K, Markowska A (2014) Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Med Chem 6:73

    Google Scholar 

  • Mohseni SS, Babaeipour V, Vali AR (2009) Design of sliding mode controller for the optimal control of fed-batch cultivation of recombinant E. coli. Chem Eng Sci 64:4433–4441

    CAS  Google Scholar 

  • Mohtashami M, Ashtiani FZ (2010) The effect of microwave heating on the yield and quality of soy hull pectin. In: Proceedings of 2010 international conference on biotechnology and food science, Bangalore, India, 9–10 February

  • Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59:4112–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Montoro M et al (2017) Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct 8:2783–2791

    CAS  PubMed  Google Scholar 

  • Morowvat MH, Babaeipour V, Memari HR, Vahidi H (2015) Optimization of fermentation conditions for recombinant human interferon beta production by Escherichia coli using the response surface methodology. Jundishapur J Microbiol 8:e16236

    PubMed  PubMed Central  Google Scholar 

  • Morowvat MH, Babaeipour V, Rajabi-Memari H, Vahidi H (2014) Metabolic changes of recombinant Escherichia coli BL21 (DE3) during overexpression of recombinant human interferon beta in HCDC. Int J Biosci 4:131–138

    CAS  Google Scholar 

  • Morowvat MH, Babaeipour V, Rajabi-Memari H, Vahidi H, Maghsoudi N (2014) Overexpression of recombinant human beta interferon (rhINF-β) in periplasmic space of Escherichia coli. Iran J Pharm Res 13:151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narayana JL, Chen J-Y (2015) Antimicrobial peptides: possible anti-infective agents. Peptides 72:88–94

    Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    CAS  PubMed  Google Scholar 

  • Oikonomopoulos A, Van Deen WK, Manansala A-R, Lacey PN, Tomakili TA, Ziman A, Hommes DW (2015) Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep 5:16570

    PubMed  PubMed Central  Google Scholar 

  • Oudart J-B et al (2015) Plasmin releases the anti-tumor peptide from the NC1 domain of collagen XIX. Oncotarget 6:3656

    PubMed  PubMed Central  Google Scholar 

  • Pahlavan Y, Kahroba H, Samadi N, Karimi A, Ansarin K, Khabbazi A (2019) Survivin modulatory role in autoimmune and autoinflammatory diseases. J Cell Physiol 234:19440–19450

    CAS  PubMed  Google Scholar 

  • Paiva AD, Breukink E (2013) Antimicrobial peptides produced by microorganisms. Antimicrobial peptides and innate immunity. Springer, Basel, pp 53–95

    Google Scholar 

  • Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH, Dastmalchi S (2019) Affinity maturation and characterization of the ofatumumab monoclonal antibody. J Cell Biochem 120:940–950

    CAS  PubMed  Google Scholar 

  • Peravali J, Kotra S, Sobha K, Nelson R, Rajesh K, Pulicherla K (2013) Antimicrobial peptides: an effective alternative for antibiotic therapy. Mintage J Pharm Med Sci 2:1–7

    CAS  Google Scholar 

  • Poluri KM, Gulati K (2017) World of proteins: structure–function relationships and engineering techniques. Protein engineering techniques. Springer, Singapore, pp 1–25

    Google Scholar 

  • Polyansky AA, Ramaswamy R, Volynsky PE, Sbalzarini IF, Marrink SJ, Efremov RG (2010) Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. J Phys Chem Lett 1:3108–3111

    CAS  Google Scholar 

  • Prens E, Deckers I (2015) Pathophysiology of hidradenitis suppurativa: an update. J Am Acad Dermatol 73:S8–S11

    CAS  PubMed  Google Scholar 

  • Qin Y et al (2019) From antimicrobial to anticancer peptides: the transformation of peptides. Recent Pat Anti-cancer Drug Discov 14:70–84

    CAS  Google Scholar 

  • Rajanbabu V, Chen J-Y, Wu J-L (2015) Antimicrobial peptides from marine organisms. Springer handbook of marine biotechnology. Springer, Berlin, pp 747–758

    Google Scholar 

  • Ramírez-Carreto S, Jiménez-Vargas JM, Rivas-Santiago B, Corzo G, Possani LD, Becerril B, Ortiz E (2015) Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides 73:51–59

    PubMed  Google Scholar 

  • Ranjbari J, Moghimi H, Vahidi H, Babaeipour V, Alibakhshi A, Arezumand R (2015) Effect of Chitosan on production of insulin-like growth factor 1 protein in Escherichia coli. Int J Biosci 6:180–187

    Google Scholar 

  • Richmond-Rakerd LS et al (2019) Common genetic contributions to high-risk trauma exposure and self-injurious thoughts and behaviors. Psychol Med 49:421–430

    PubMed  Google Scholar 

  • Roy AC, Wilson GG, Edgell DR (2016) Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference. Nucleic Acids Res 44:7350–7359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rzepiela AJ, Sengupta D, Goga N, Marrink SJ (2010) Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss 144:431–443

    CAS  PubMed  Google Scholar 

  • Sadredinamin M, Mehrnejad F, Hosseini P, Doustdar F (2016) Antimicrobial peptides (AMPs). Nov Biomed 4:70–76

    CAS  Google Scholar 

  • Saleh M, Reza VA, Valiollah B (2008) Designing new controller for fed-batch cultivation of recombinant E. coli. In: 2008 27th Chinese control conference, 2008. IEEE, pp 207–211

  • Sani M-A, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49:1130–1138

    CAS  PubMed  Google Scholar 

  • Santibáñez-López CE, Possani LD (2015) Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: insights on their classification and evolution. Toxicon 107:317–326

    PubMed  Google Scholar 

  • Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408

    CAS  PubMed  Google Scholar 

  • Shah D (2019) Antifungal plant proteins, peptides, and methods of use. Google Patents

  • Shishodia SK, Tiwari S, Shankar J (2019) Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 10:1–15

    Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    PubMed  Google Scholar 

  • Stern Bauer T, Hayouka Z (2018) Random mixtures of antimicrobial peptides inhibit bacteria associated with pasteurized bovine milk. J Pept Sci 24:e3088

    PubMed  Google Scholar 

  • Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS (2009) Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochim Biophys Acta Biomembr 1788:1667–1679

    CAS  Google Scholar 

  • Sudheendra U, Dhople V, Datta A, Kar RK, Shelburne CE, Bhunia A, Ramamoorthy A (2015) Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Eur J Med Chem 91:91–99

    CAS  PubMed  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177

    CAS  PubMed  Google Scholar 

  • Théolier J, Fliss I, Jean J, Hammami R (2014) MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci Technol 94:181–193

    Google Scholar 

  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2010) Peptide signaling in the staphylococci. Chem Rev 111:117–151

    PubMed  PubMed Central  Google Scholar 

  • Tieleman D (2017) Antimicrobial peptides in the cross hairs of computer simulations. Biophys J 113:1–3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig T et al (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics 4:58–69

    CAS  Google Scholar 

  • Umenhoffer K et al (2017) Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth Biol 6:1471–1483

    CAS  PubMed  Google Scholar 

  • Uzair B, Bint-e-Irshad S, Khan BA, Azad B, Mahmood T, Rehman MU, Braga VA (2018) Scorpion venom peptides as a potential source for human drug candidates. Protein Pept Lett 25:702–708

    CAS  PubMed  Google Scholar 

  • Vetchinkina E, Komakhina V, Vysotskii D, Zaitsev D, Smirnov A, Babakov A, Komakhin R (2016) Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens. Russ J Genet 52:939–951

    CAS  Google Scholar 

  • Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals 7:545–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Li X, Wang Z (2015) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen CH, Hu D, Ulmschneider MB, Ulmschneider JP (2016) Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat Commun 7:13535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo H-J, Wallqvist A (2011) Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study. J Phys Chem B 115:8122–8129

    CAS  PubMed  Google Scholar 

  • Yazdani P et al (2019) Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif Cells Nanomed Biotechnol 47:436–442

    CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Li Y, Su N, Zhou Y, Xiang J, Sun Y (2018) Biological function of a gC1qR homolog (EcgC1qR) of Exopalaemon carinicauda in defending bacteria challenge. Fish Shellfish Immunol 82:378–385

    CAS  PubMed  Google Scholar 

  • Zhang L et al (2015) Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 128:231–250

    CAS  PubMed  Google Scholar 

  • Zheng Z et al (2017) The synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00686-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Wang P, Zhang K, Jin F-s, Li Y-f, Zhang J, Sun Z-y (2015) Reduction of fertility in male mice immunised with pSG.SS.C3d3.YL.Bin1b recombinant vaccine. Eur J Contracept Reprod Health Care 20:372–378

    PubMed  Google Scholar 

  • Zhou C et al (2018) Discovery of two bombinin peptides with antimicrobial and anticancer activities from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Chem Biol Drug Des 91:50–61

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran and Shahid Beheshti University of Medical Sciences, Tehran.

Author information

Authors and Affiliations

Authors

Contributions

The core idea of this study came from R. S., F. A. K., and V.T. They also directed the other authors and analyzed the collected papers. R. S., F. A. K., T. E., S. E., S. M., V. B., and V. T. wrote the manuscript in collaboration with V. B. and V. T.

Corresponding authors

Correspondence to Valiollah Babaeipour or Vahideh Tarhriz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfi, R., Kahaki, F.A., Ebrahimi, T. et al. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. Int J Pept Res Ther 26, 1451–1463 (2020). https://doi.org/10.1007/s10989-019-09946-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09946-9

Keywords

Navigation