Skip to main content

Advertisement

Log in

Bioactivity Potentials and General Applications of Fish Protein Hydrolysates

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Fish protein hydrolysates (FPHs) are rich source of amino acids and peptides that are beneficial to human health. Industrially, when fish are processed, huge amount of wastes are generated. These wastes are often discarded into waterways, seas, oceans or even buried in the ground. However, these wastes can be processed into FPHs using enzymatic hydrolysis. Generally, FPHs possess numerous bioactivity potentials such as antioxidant, antimicrobial, anti-tumor, ACE inhibiting activity, calcium binding properties, and anticoagulant properties. All of which were reviewed and presented in this article. In addition, their application in food, agriculture and pharmaceutical industries were explored. Nevertheless, despite the numerous bioactivities of FPHs, information on transportation and bioavailability of FPHs in gastro-intestinal system is limited. Thus, it was suggested that further work should be carried out in this aspect to validate their action, mechanism and therapeutic value in the gastro-intestinal system. This will enhance their potentials as a nutritive ingredient in the emerging nutraceutical and pharmaceutical commercial markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alemán A, Giménez B, Pérez-Santin E, Gómez-Guillén M, Montero P (2011) Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem 125(2):334–341

    Google Scholar 

  • Balti R, Nedjar-Arroume N, Adje EY, Guillochon D, Nasri M (2010) Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. J Agric Food Chem 58(6):3840–3846

    CAS  PubMed  Google Scholar 

  • Battison AL, Summerfield R, Patrzykat A (2008) Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish Shellfish Immunol 25(1–2):181–187

    CAS  PubMed  Google Scholar 

  • Benjakul S, Yarnpakdee S, Senphan T, Halldorsdottir SM, Kristinsson HG (2014) Fish protein hydrolysates: production, bioactivities and applications. Antioxidants and functional components in aquatic foods, 1st edn. Matil Ltd, Reykjavik, p 237Á283

    Google Scholar 

  • Benjakul S, Mad-Ali S, Sookchoo P (2017) Characteristics of biocalcium powders from pre-cooked tongol (Thunnus tonggol) and yellowfin (Thunnus albacores) tuna bones. Food Biophys 12(4):412–421

    Google Scholar 

  • Bougatef A, Nedjar-Arroume N, Ravallec-Plé R, Leroy Y, Guillochon D, Barkia A, Nasri M (2008) Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem 111(2):350–356

    CAS  PubMed  Google Scholar 

  • Byun H-G, Kim SK (2001) Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem 36(12):1155–1162

    CAS  Google Scholar 

  • Chalamaiah M, Hemalatha R, Jyothirmayi R (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135(4):3020–3038

    CAS  PubMed  Google Scholar 

  • Chang W-T, Pan CY, Rajanbabu V, Cheng C, Chen J (2011) Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides 32(2):342–352

    CAS  PubMed  Google Scholar 

  • Clemente A (2000) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Technol 11(7):254–262

    CAS  Google Scholar 

  • Davalos A, Miguel M, Bartolome B, Lopez-Fandino R (2004) Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 67(9):1939–1944

    CAS  PubMed  Google Scholar 

  • Dong X, Xu H, Huang K, Liou Q, Zhou J (2002) The preparation and characterization of an antimicrobial polypeptide from the loach, Misgurnus anguillicaudatus. Protein Expres Purif 26(2):235–242

    CAS  Google Scholar 

  • Doyen A, Saucier L, Beaulieu L, Pouliot Y, Bazinet L (2012) Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem 132(3):1177–1184

    CAS  PubMed  Google Scholar 

  • Egerton S, Culloty S, Whooley J, Stanton C, Ross PR (2018) Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem 245:698–706

    CAS  PubMed  Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48(5):430–441

    CAS  PubMed  Google Scholar 

  • Ewart HS, Dennis D, Potvin M, Tiller C, Fang LH, Zhang R, Zhu XM, Curtis JM, Cloutier S, Du G (2009) Development of a salmon protein hydrolysate that lowers blood pressure. Eur Food Res Technol 229(4):561–569

    CAS  Google Scholar 

  • FitzGerald R, O’cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24(2):234–237

    CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  PubMed  Google Scholar 

  • Gómez-Guillén M, Giménez B, López-Caballero M, Montero M (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827

    Google Scholar 

  • He L, Huang J, Sheng S, Sun S (2005) Anti-tumor substances of shark and their action mechanisms. Mar Sci 29:63–67

    CAS  Google Scholar 

  • Hsu K-C (2010) Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem 122(1):42–48

    CAS  Google Scholar 

  • Idowu AT, Benjakul S (2019) Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 43(9):e12978

    PubMed  Google Scholar 

  • Idowu AT, Benjakul S, Sae-Leaw T, Sookchoo P, Kishimura H, Suzuki N, Kitani Y (2019a) Amino acid composition, volatile compounds and bioavailability of biocalcium powders from salmon frame as affected by pretreatment. J Aquat Food Prod Technol 28(7):772–780

    CAS  Google Scholar 

  • Idowu AT, Benjakul S, Sinthusamran S, Pongsetkul J, Sae-Leaw T, Sookchoo P (2019b) Whole wheat cracker fortified with biocalcium and protein hydrolysate powders from salmon frame: characteristics and nutritional value. Food Qual Saf 3(3):191–199

    CAS  Google Scholar 

  • Idowu AT, Benjakul S, Sinthusamran S, Sookchoo P, Kishimura H (2019c) Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J Food Biochem 43(2):e12734

    PubMed  Google Scholar 

  • Itou K, Akahane Y (2004) Antihypertensive effect of heshiko, a fermented mackerel product, on spontaneously hypertensive rats. Fish Sci 70(6):1121–1129

    CAS  Google Scholar 

  • Je J-Y, Qian Z, Byun H, Kim S (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Proc Biochem 42(5):840–846

    CAS  Google Scholar 

  • Jung W-K, Jo H, Qian Z, Jeong Y, Park S, Choi I, Kim S (2007) A novel anticoagulant protein with high affinity to blood coagulation factor Va from Tegillarca granosa. BMB Rep 40(5):832–838

    CAS  Google Scholar 

  • Jung W-K, Kim S-K (2009) Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem 117(4):687–692

    CAS  Google Scholar 

  • Jung W-K, Lee B, Kim S (2006a) Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br J Nutr 95(1):124–128

    CAS  PubMed  Google Scholar 

  • Jung W-K, Mendis E, Je J, Park P, Son BW, Kim HC, Choi YK, Kim SK (2006b) Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 94(1):26–32

    CAS  Google Scholar 

  • Jung W-K, Park P, Byun H-G, Moon SH, Kim SK (2005) Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chem 91(2):333–340

    CAS  Google Scholar 

  • Karnjanapratum S, Benjakul S (2017) Antioxidant and sensory properties of instant cofee fortified with galactose-fish skin gelatin hydrolysate maillard reaction products. Carpath J Food Sci Technol. https://doi.org/10.1080/10498850.2015.1113221

    Article  Google Scholar 

  • Kim S-K, Jeon Y, Byun H, Park P, Kim G, Choi Y, Lee Y (1999) Calcium absorption acceleration effect on phosphorylated and non-phosphorylated peptides from hoki (Johnius belengeri) frame. Korean J Fish Aquat Sci 32(6):713–717

    CAS  Google Scholar 

  • Kim S-K, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2(1):1–9

    CAS  Google Scholar 

  • Klomklao S, Benjakul S (2017) Utilization of tuna processing byproducts: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. J Food Process Preserv 41(3):e12970

    Google Scholar 

  • Klompong V, Benjakul S (2015) Antioxidative and antimicrobial activities of the extracts from the seed coat of Bambara groundnut (Voandzeia subterranea). RSC Adv 5(13):9973–9985

    CAS  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Shahidi F (2009) Characteristics and use of yellow stripe trevally hydrolysate as culture media. J Food Sci 74(6):S219–S225

    CAS  PubMed  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Shahidi F (2007) Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102(4):1317–1327

    CAS  Google Scholar 

  • Klompong V, Benjakul S, Kantachote D, Hayes KD, Shahidi F (2008) Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. Int J Food Sci Technol 43(6):1019–1026

    CAS  Google Scholar 

  • Kurbanoglu EB, Algur OF (2004) A new medium from ram horn hydrolysate for enumeration of aerobic bacteria. Turk J Vet Anim Sci 28(2):343–350

    Google Scholar 

  • Lee S-H, Qian Z, Kim S (2010) A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 118(1):96–102

    CAS  Google Scholar 

  • Li-Chan EC (2015) Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci 1:28–37

    Google Scholar 

  • Li G-H, Le G, Shi Y, Shrestha S (2004) Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24(7):469–486

    CAS  Google Scholar 

  • Liu Z, Dong S, Xu J, Zeng M, Song H, Zhao Y (2008) Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19(3):231–235

    Google Scholar 

  • Mecklenburg L, Kusewitt D, Kolly C, Treumann S, Adams ET, Diegel K, Yamate J, Kaufmann W, Müller S, Danilenko D (2013) Proliferative and non-proliferative lesions of the rat and mouse integument. J Toxic Pathol 26(3_Suppl):27S–57S

    Google Scholar 

  • Mendis E, Rajapakse N, Byun H, Kim S (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 77(17):2166–2178

    CAS  PubMed  Google Scholar 

  • Najafian L, Babji AS (2012) A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides 33(1):178–185

    CAS  PubMed  Google Scholar 

  • Nalinanon S, Benjakul S, Kishimura H, Shahidi F (2011) Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem 124(4):1354–1362

    CAS  Google Scholar 

  • Nakajima K, Yoshie-Stark Y, Ogushi M (2009) Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chem 114(3):844–851

    CAS  Google Scholar 

  • Nasri R, Amor IB, Bougatef A, Nedjar-Arroume N, Dhulster P, Gargouri J, Châabouni MK, Nasri M (2012) Anticoagulant activities of goby muscle protein hydrolysates. Food Chem 133(3):835–841

    CAS  Google Scholar 

  • Nazeer R, Kumar NS (2011) Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Sci Biotechnol 20(4):1087

    Google Scholar 

  • Ngo D-H, Qian Z, Ryu B, Park JW, Kim S-K (2010) In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J Funct Foods 2(2):107–117

    CAS  Google Scholar 

  • Novriadi R, Spangler E, Rhodes M, Hanson T, Davis DA (2017) Effects of various levels of squid hydrolysate and squid meal supplementation with enzyme-treated soy on growth performance, body composition, serum biochemistry and histology of Florida pompano Trachinotus carolinus. Aquaculture 481:85–93

    CAS  Google Scholar 

  • Ono S, Hosokawa M, Miyashita K, Takahashi K (2006) Inhibition properties of dipeptides from salmon muscle hydrolysate on angiotensin I-converting enzyme. Int J Food Sci Technol 41(4):383–386

    CAS  Google Scholar 

  • Oosterveer P (2008) Governing global fish provisioning: ownership and management of marine resources. Ocean Coast Manage 51(12):797–805

    Google Scholar 

  • Peña-Ramos EA, Xiong YL, Arteaga GE (2004) Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. J Sci Food Agric 84(14):1908–1918

    Google Scholar 

  • Phanturat P, Benjakul S, Visessanguan W, Roytrakul S (2010) Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT-Food Sci Technol 43(1):86–97

    CAS  Google Scholar 

  • Raghavan S, Kristinsson HG (2009) ACE-inhibitory activity of tilapia protein hydrolysates. Food Chem 117(4):582–588

    CAS  Google Scholar 

  • Rajapakse N, Jung WK, Mendis E, Moon S, Kim S (2005) A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci 76(22):2607–2619

    CAS  PubMed  Google Scholar 

  • Raut MK, Sahu AB (2018) Projection of population of stunted children under five years and anaemic women of reproductive age in thirteen low, upper and high income 100 million+ countries around the world up to 2050. Int J Community Med Public Health 5(7):2878

    Google Scholar 

  • Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C (2011) Bioactive peptides from muscle sources: meat and fish. Nutrients 3(9):765–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha BC, Hayashi K (2001) Debittering of protein hydrolyzates. Biotechnol Adv 19(5):355–370

    CAS  PubMed  Google Scholar 

  • Salampessy J, Phillips M, Seneweera S, Kailasapathy K (2010) Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chem 120(2):556–560

    CAS  Google Scholar 

  • Samaranayaka AG, Kitts DD, Li-Chan EC (2010) Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J Agric Food Chem 58(3):1535–1542

    CAS  PubMed  Google Scholar 

  • Samaranayaka AG, Li-Chan EC (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods 3(4):229–254

    CAS  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956

    CAS  PubMed  Google Scholar 

  • Shaviklo GR, Thorkelsson G, Sveinsdottir K, Rafipour F (2011) Chemical properties and sensory quality of ice cream fortified with fish protein. J Sci Food Agric 91(7):1199–1204

    CAS  PubMed  Google Scholar 

  • Shen X, Jia F, Zhou J (2001) Anti-tumor effect of the preparation extracted from sea fish Manta birostris. Chin J Mar Drugs 20(12):35–43

    CAS  Google Scholar 

  • Singh A, Idowu AT, Benjakul S, Kishimura H, Aluko RE, Kumagai Y (2020) Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with β-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126686

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinthusamran S, Benjakul S, Kijroongrojana K, Prodpran T (2019a) Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of Pacific white shrimp. J Food Sci Technol 56(3):1145–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinthusamran S, Idowu AT, Benjakul S, Prodpran T, Yesilsu AF, Kishimura H (2019b) Effect of proteases and alcohols used for debittering on characteristics and antioxidative activity of protein hydrolysate from salmon frames. J Food Sci Technol 57:473–483

    PubMed  PubMed Central  Google Scholar 

  • Song L, Ren S, Yu R, Yan C, Li T, Zhao Y (2008) Purification, characterization and in vitro anti-tumor activity of proteins from Arca subcrenata Lischke. Mar Drugs 6(3):418–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Wei R, Zhang B, Wang D (2012) Optimization of the antibacterial activity of half-fin anchovy (Setipinna taty) hydrolysates. Food Biopro Technol 5(5):1979–1989

    CAS  Google Scholar 

  • Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Oxidative stress in carcinogenesis: new synthetic compounds with dual effects upon free radicals and cancer. Curr Med Chem 20(36):4451–4459

    CAS  PubMed  Google Scholar 

  • Thiansilakul Y, Benjakul S, Shahidi F (2007) Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem 103(4):1385–1394

    CAS  Google Scholar 

  • Vijaykrishnaraj M, Roopa B, Prabhasankar P (2016) "Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour. Food Chem 211:715–725

    CAS  PubMed  Google Scholar 

  • Wang M, Nie Y, Peng Y, He F, Yang J, Wu C, Li X (2012) Purification, characterization and antitumor activities of a new protein from Syngnathus acus, an officinal marine fish. Mar Drugs 10(1):35–50

    PubMed  Google Scholar 

  • Wang Y, Zhu F, Han F, Wang H (2008) Purification and characterization of antioxidative peptides from salmon protamine hydrolysate. J Food Biochem 32(5):654–671

    CAS  Google Scholar 

  • Wang Y-K, He H, Wang G, Wu H, Zhou B, Chen X, Zhang Y (2010) Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar Drugs 8(2):255–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, He H, Chen X, Sun C, Zhang Y, Zhou B (2008) Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Proc Biochem 43(4):457–461

    CAS  Google Scholar 

  • Wu J, Fujioka M, Sugimoto K, Mu G, Ishimi Y (2004) Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J Bone Miner Metab 22(6):547–553

    CAS  PubMed  Google Scholar 

  • You L, Zhao M, Regenstein JM, Ren J (2010) Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Res Int 43(4):1167–1173

    CAS  Google Scholar 

  • Yuan YV, Kitts DD (1994) Calcium absorption and bone utilization in spontaneously hypertensive rats fed on native and heat-damaged casein and soya-bean protein. Br J Nutr 71(4):583–603

    CAS  PubMed  Google Scholar 

  • Zhou Y, Thirumurugan R, Wang Q, Lee CM, Davis DA (2016) Use of dry hydrolysate from squid and scallop product supplement in plant based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquac 465:53–59

    CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement goes the Prince of Songkla University for the scholarship granted to pursue graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Temitope Idowu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research Involving Human Participants and/or Animals

No human participants or animals were used for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idowu, A.T., Igiehon, O., Idowu, S. et al. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 27, 109–118 (2021). https://doi.org/10.1007/s10989-020-10071-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10071-1

Keywords

Navigation