Skip to main content
Log in

The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Hypothalamus is the most critical center in the brain for regulation of food intake. Hypothalamus performs this function through special nuclei. The most important of these nuclei is PVN, because in addition to receiving input from special hypothalamic nuclei, it also receives input from other regions of the brain, as well circulation. Inputs received from other areas of the brain via special receptors including: MCR, GABA, IR, LepR, CBR, OXR, HR, NPY, D, CRF, and GHSR. Due to the presence of several receptors on VMH, different neurotransmitters and neuromodulators related to central food intake regulation effect on this nucleus. These neurotransmitters include two categories: orexigenic and anorexigenic. Orexigenic neuropeptides such as: NPY, orexin, endocannabinoids, glutamate, urocortin, and ghrelin. Anorexigenic neuropeptides included: MSH, CRF, leptin, insulin, BDNF, histamine, and dopamine. Then, VMH integrates these inputs from the bind of these neurotransmitters to their receptors, and sends the final feedback to other brain regions. The VMH is the first satiety center in the brain, and it receives various inputs from different regions of the brain and circulation via multiple receptors, as well as integrating these inputs and sending the appropriate output to other areas of the brain, VMH plays an important role in central control of food intake. Therefore, throughout this review article would discuss the function of this nucleus on central regulation of food intake via various neuropeptides and receptors.

Graphic Abstract

Legend: ARC: Arcuate nucleus. PVN: Paraventricular nucleus. VMH: Ventromedial hypothalamus. SF1: Serotonergic factor 1. BDNF: Brain-derived neurotropic factor. POMC: pro-opiomelanocortin. AgRP/NPY: Agouti related protein/ Neuropeptide Y. VTA: Ventral tegmental area. CB: Endocannabinoidergic neuron. OX: Orexin neuron. TB: Tuberommillary nucleus. H: Histaminergic neuron. D: Dopaminergic neuron. G: Glutamatergic neuron.: Stimulatory projection.: Inhibitory projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARC:

Arcuate nucleus

VMH:

Ventromedial hypothalamus

PVN:

Paraventricular nucleus

LHA:

Lateral hypothalamus area

POMC:

Pro-opiomelanocortin

CART:

Cocaine–amphetamine regulate transcript

NPY:

Neuropeptide Y

AgRP:

Agouti related protein

MSH:

Melanocortin stimulating hormone

CRF:

Corticotropin releasing factor

BDNF:

Brain-derived neurotropic factor

CNS:

Central nervous system

MCR:

Melanocortin receptors

CAMP:

Cyclic adenosine monophosphate

DMH:

Dorsomedial nucleus

SF1:

Steroidogenic factor 1

GABA:

γ-Aminobutyric acid

IR:

Insulin receptor

LepR:

Leptin receptor

CBR:

Endocannabinoid receptor

MAPK:

Mitogen activated protein kinase

OXR:

Orexin receptor

HR:

Histaminergic receptor

D:

Dopamine

GHSR:

Growth hormone secretagogues receptor

Vglut:

Vesicular glutamate transporter

N/OFQ:

Nociceptin/orphanin FQ

ORL-1:

Orphan Gi/Go-coupled opioid receptors

GIRK:

G protein-coupled inwardly-rectifying potassium

ICV:

Intracerebroventricular

ACTH:

Adrenocorticotropin hormone

VTA:

Ventral tegmental area

BBB:

Blood brain barrier

References

  • Bäckberg M, Hervieu G, Wilson S, Meister B (2002) Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci 15(2):315–328

    PubMed  Google Scholar 

  • Baghbanzadeh A, Babapour V (2007) Glutamate ionotropic and metabotropic receptors affect feed intake in broiler cockerels. IJVM 1(1):125–129

    Google Scholar 

  • Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123(3):493–505

    CAS  PubMed  Google Scholar 

  • Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B (2009) Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology 150(6):2646–2653

    CAS  PubMed  Google Scholar 

  • Bellocchio L, Soria-Gómez E, Quarta C, Metna-Laurent M, Cardinal P, Binder E, Cannich A, Delamarre A, Häring M, Martín-Fontecha M, Vega D (2013) Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. PANS 110(12):4786–4791

    CAS  Google Scholar 

  • Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155(6):1337–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blandina P, Provensi G, Munari L, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 6:33

    PubMed  PubMed Central  Google Scholar 

  • Cassaglia PA, Hermes SM, Aicher SA, Brooks VL (2011) Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol 589(7):1643–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H, Digruccio M, Chen P, Li C (2012) Type 2 corticotropin-releasing factor receptor in the ventromedial nucleus of hypothalamus is critical in regulating feeding and lipid metabolism in white adipose tissue. Endocrinology 153:166–176

    CAS  PubMed  Google Scholar 

  • Chee MJ, Myers MG, Price CJ, Colmers WF (2010) Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus. J Neurosci 30(9):3380–3390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chee MJ, Price CJ, Statnick MA, Colmers WF (2011) Nociceptin/orphanin FQ suppresses the excitability of neurons in the ventromedial nucleus of the hypothalamus. J Physiol 589(13):3103–3114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Vaughan J, Donaldson C, Vale W, Li C (2010) Injection of Urocortin 3 into the ventromedial hypothalamus modulates feeding, blood glucose levels, and hypothalamic POMC gene expression but not the HPA axis. Am J Physiol Endocrinol Metab 298(2):337–345

    Google Scholar 

  • Chen P, Van Hover C, Lindberg D, Li C (2013) Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front Endocrinol 3:180

    Google Scholar 

  • Cheung CC, Krause WC, Edwards RH, Yang CF, Shah NM, Hnasko TS, Ingraham HA (2015) Sex-dependent changes in metabolism and behavior, as well as reduced anxiety after eliminating ventromedial hypothalamus excitatory output. Mol Metab 4(11):857–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury GM, Wang P, Ciardi A, Mamillapalli R, Johnson J, Zhu W, Eid T, Behar K, Chan O (2017) Impaired glutamatergic neurotransmission in the ventromedial hypothalamus may contribute to defective counterregulation in recurrently hypoglycemic rats. Diabetes 66(7):1979–1989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen MJ, Ling N, Foster AC, Pelleymounter MA (2001) Urocortin, corticotropin releasing factor-2 receptors and energy balance. Endocrinology 142(3):992–999

    CAS  PubMed  Google Scholar 

  • Cummings DE (2006) Ghrelin and the short-and long-term regulation of appetite and body weight. Physiol Behav 89(1):71–84

    CAS  PubMed  Google Scholar 

  • De Backer MW, La Fleur SE, Brans MA, Van Rozen AJ, Luijendijk MC, Merkestein M, Garner KM, Van Der Zwaal EM, Adan RA (2011) Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions. Int J Obes 5(5):629–641

    Google Scholar 

  • Delgado TC (2013) Glutamate and GABA in appetite regulation. Front Endocrinol 4:103

    Google Scholar 

  • Deng C, Weston-Green K, Huang XF (2010) The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain? Prog Neuro-Psychoph 34(1):1–4

    Google Scholar 

  • Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2):191–203

    CAS  PubMed  Google Scholar 

  • Faber CL, Matsen ME, Velasco KR, Damian V, Phan BA, Adam D, Therattil A, Schwartz MW, Morton GJ (2018) Distinct neuronal projections from the hypothalamic ventromedial nucleus mediate glycemic and behavioral effects. Diabetes 67(12):2518–2529

    PubMed  PubMed Central  Google Scholar 

  • Fekete ÉM, Inoue K, Zhao Y, Rivier JE, Vale WW, Szücs A, Koob GF, Zorrilla EP (2007) Delayed satiety-like actions and altered feeding microstructure by a selective type 2 corticotropin-releasing factor agonist in rats: intra-hypothalamic urocortin 3 administration reduces food intake by prolonging the post-meal interval. Neuropsychopharmacology 32(5):1052–1068

    CAS  PubMed  Google Scholar 

  • Flanagan-Cato LM, Fluharty SJ, Weinreb EB, LaBelle DR (2008) Food restriction alters neuronal morphology in the hypothalamic ventromedial nucleus of male rats. Endocrinology 149(1):93–99

    CAS  PubMed  Google Scholar 

  • Fu LY, van den Pol AN (2008) Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci 28(21):5433–5449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Horvath TL (2007) Neurobiology of feeding and energy expenditure. Annu Rev Neurosci 30:367–398

    CAS  PubMed  Google Scholar 

  • Gao Q, Horvath TL (2008) Neuronal control of energy homeostasis. FEBS Lett 582(1):132–1341

    CAS  PubMed  Google Scholar 

  • Gardiner JV, Bataveljic A, Patel NA, Bewick GA, Roy D, Campbell D, Greenwood HC, Murphy KG, Hameed S, Jethwa PH, Ebling FJ (2010) Prokineticin 2 is a hypothalamic neuropeptide that potently inhibits food intake. Diabetes 59(2):397–406

    CAS  PubMed  Google Scholar 

  • Ghamari-Langroudi M, Srisai D, Cone RD (2011) Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc Natl Acad Sci 108(1):355–360

    CAS  PubMed  Google Scholar 

  • Giannoni P, Passani MB, Nosi D, Chazot PL, Shenton FC, Medhurst AD, Munari L, Blandina P (2009) Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur J Neurosci 29(12):2363–2374

    PubMed  Google Scholar 

  • Gilland KE, Fox EA (2017) Effect of food deprivation or short-term Western diet feeding on BDNF protein expression in the hypothalamic arcuate, paraventricular, and ventromedial nuclei. Am J Physiol-Reg I 312(4):611–625

    Google Scholar 

  • Hamidi F, Yousefvand S (2017) Role of the hypothalamic arcuate nucleus in regulation of food intake (review study). J Neyshabur Univ Med Sci 5(1):52–65 (Persian)

    Google Scholar 

  • Harris RB (2010) Leptin responsiveness of mice deficient in corticotrophin-releasing hormone receptor type 2. Neuroendocrinology 92(3):198–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan TF, Hasan H (2011) Anorexia nervosa: a unified neurological perspective. Int J Med Sci 8(8):679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiguchi H, Sheng Z, Routh V, Gerzanich V, Simard JM, Bryan J (2017) Direct versus indirect actions of ghrelin on hypothalamic NPY neurons. PloS one 12(9).

  • Hillebrand JJ, Kas MJ, Adan RA (2005) a-MSH enhances activity-based anorexia. Peptides 26(10):1690–1696

    CAS  PubMed  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810

    CAS  PubMed  Google Scholar 

  • Ichijo A, Hayashi N, Fukuoka C, Hu JJ, Yoshizawa F, Sugahara K (2008) Dopamine release in the ventromedial hypothalamus of growing chickens decreases when they are fed a lysine devoid diet. Poult Sci 45(4):281–286

    CAS  Google Scholar 

  • Iigaya K, Minoura Y, Onimaru H, Kotani S, Izumizaki M (2019) Effects of feeding-related peptides on neuronal oscillation in the ventromedial hypothalamus. Clin Med 8(3):292

    CAS  Google Scholar 

  • Isganaitis E, Lustig RH (2005) Fast food, central nervous system insulin resistance, and obesity. Arterioscler Thromb Vasc Biol 25(12):2451–2462

    CAS  PubMed  Google Scholar 

  • Jaefari-Anari M, Zendehdel M, Gilanpour H, Asghari A, Babapour V (2018) Central opioidergic system interplay with histamine on food intake in neonatal chicks: role of µ-opioid and H1/H3 receptors. Braz J Poultry Sci 20(3):595–604

    Google Scholar 

  • Jelsing J, Larsen PJ, Vrang N (2009) The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion. Neurosci Lett 463(2):125–129

    CAS  PubMed  Google Scholar 

  • Johnstone LE, Fong TM, Leng G (2006) Neuronal activation in the hypothalamus and brainstem during feeding in rats. Cell Metab 4(4):313–321

    CAS  PubMed  Google Scholar 

  • Kamatchi GL, Rathanaswami P (2012) Inhibition of deprivation-induced food intake by GABAA antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms. J Clin Biochem Nutr 51:19–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas SP, Subramanian KV, Shukla VG, Makriyannis A, Bergman J (2013) Cannabinoid discrimination and antagonism by CB1 neutral and inverse agonist antagonists. J Pharmacol Exp Ther 344(3):561–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE (2005) A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 493(1):72–85

    CAS  PubMed  Google Scholar 

  • Kim KW, Zhao L, Parker KL (2009) Central nervous system-specific knockout of steroidogenic factor 1. Mol Cell Endocrinol 300(1–2):132–136

    CAS  PubMed  Google Scholar 

  • Kinyua AW, Yang DJ, Chang I, Kim KW (2016) Steroidogenic factor 1 in the ventromedial nucleus of the hypothalamus regulates age-dependent obesity. PLoS One 11(9):e0162352

    PubMed  PubMed Central  Google Scholar 

  • Kirkham TC, Williams CM, Fezza F, Marzo VD (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136(4):550–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klöckener T, Hess S, Belgardt BF, Paeger L, Verhagen LA, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB (2011) High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 14(7):911

    PubMed  PubMed Central  Google Scholar 

  • Kumarnsit E, Johnstone LE, Leng G (2003) Actions of neuropeptide Y and growth hormone secretagogues in the arcuate nucleus and ventromedial hypothalamic nucleus. Eur J Neurosci 17(5):937–944

    PubMed  Google Scholar 

  • Kuperman Y, Chen A (2008) Urocortins: emerging metabolic and energy homeostasis perspectives. Trends Endrocrinol Metab 19(4):122–129

    CAS  Google Scholar 

  • Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB (2016) Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol Metab 5(8):589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li SB, de Lecea L (2020) The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 167:107993

    CAS  PubMed  Google Scholar 

  • Li J, Hu Z, de Lecea L (2014) The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 171(2):332–350

    CAS  PubMed  Google Scholar 

  • López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodríguez-Cuenca S, Deoliveira RM (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7(5):389–399

  • Lovejoy DA, Chang BS, Lovejoy NR, del Castillo J (2014) Molecular evolution of GPCRs: CRH/CRH receptors. J Mol Endocrinol 52(3):43–60

    Google Scholar 

  • Lu XY, Bagnol D, Burke S, Akil H, Watson SJ (2000) Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav 37(4):335–344

    CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M (2001) Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    CAS  PubMed  Google Scholar 

  • Martynska L, Wolinska-Witort E, Chmielowska M, Bik W, Baranowska B (2005) The physiological role of orexins. Neuro Endocrinol Lett 26(4):289–292

    CAS  PubMed  Google Scholar 

  • Mason BL, Wang Q, Zigman JM (2014) The central nervous system sites mediating the orexigenic actions of ghrelin. Annu Rev 76:519–533

    CAS  Google Scholar 

  • Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endrocrinol Metab 18(1):27–37

    CAS  Google Scholar 

  • Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A, Rossi-Fanelli F (2000) Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16(10):843–857

    CAS  PubMed  Google Scholar 

  • Merkestein M, Van Gestel MA, Van Der Zwaal EM, Brans MA, Luijendijk MC, Van Rozen AJ, Hendriks J, Garner KM, Boender AJ, Pandit R, Adan R (2014) GHS-R1a signaling in the DMH and VMH contributes to food anticipatory activity. Int J Obes 38(4):610–618

    CAS  Google Scholar 

  • Messina A, Monda V, Villano I, Valenzano AA, Salerno M, Tafuri D, Avola R, Chieffi S, Sullo A, Cibelli G, Monda M (2017) Orexin system increases energy expenditure by brown adipose tissue activity. Natl J Physiol Pharm Pharmacol 7(7):658

    CAS  Google Scholar 

  • Milbank E, López M (2019) Orexins/hypocretins: key regulators of energy homeostasis. Front Endocrinol 10:830

    Google Scholar 

  • Millington GW (2007) The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab 4(1):18

  • Mitchell SE, Nogueiras R, Morris A, Tovar S, Grant C, Cruickshank M, Rayner DV, Dieguez C, Williams LM (2009) Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. J Physiol 587(14):3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 297(6):1247–1259

    Google Scholar 

  • Myers MG Jr, Münzberg H, Leinninger GM, Leshan RL (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 9(2):117–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiol-Reg I 300(5):1053–1069

    Google Scholar 

  • Olszewski PK, Levine AS (2004) characterization of influence of central nociceptin/orphanin FQ on consummatory behavior. Endocrinology 145(6):2627–2632

    CAS  PubMed  Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27(1):73–100

    CAS  PubMed  Google Scholar 

  • Pang ZP, Han W (2012) Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci Rep 32(5):423–432

    CAS  PubMed  Google Scholar 

  • Parker JA, Bloom SR (2012) Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 63(1):18–30

    CAS  PubMed  Google Scholar 

  • Passani MB, Blandina P, Torrealba F (2011) The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther 336(1):24–29

    CAS  PubMed  Google Scholar 

  • Pelleymounter MA, Joppa M, Carmouche M, Cullen MJ, Brown B, Murphy B, Grigoriadis DE, Ling N, Foster AC (2000) Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther 293(3):799–806

    CAS  PubMed  Google Scholar 

  • Rafiei M, Taati M, Alavi S, Nayebzadeh H, Zendehdel M (2011) Effects of intracerebroventricular injection of histamine and H1, H2 receptor antagonists on electrocardiographic parameters in broiler chickens. Iran J Vet Res 12(3):192–198

    Google Scholar 

  • Ramos-Lobo AM, Donato J Jr (2017) The role of leptin in health and disease. Temperature 4(3):258–291

    Google Scholar 

  • Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S (2010) Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides 44(3):261–268

    CAS  PubMed  Google Scholar 

  • Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125(1–3):201–208

    CAS  PubMed  Google Scholar 

  • Sakata T, Yoshimatsu H, Masaki T, Tsuda K (2003) Anti-obesity actions of mastication driven by histamine neurons in rats. Exp Biol Med 228(10):1106–1110

    CAS  Google Scholar 

  • Sánchez-Lasheras C, Könner AC, Brüning JC (2010) Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrin 31(1):4–15

    Google Scholar 

  • Segal JP, Stallings NR, Lee CE, Zhao L, Socci N, Viale A, Harris TM, Soares MB, Childs G, Elmquist JK, Parker KL (2005) Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. J Neurosci 25(16):4181–4188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekino A, Ohata H, Mano-Otagiri A, Arai K, Shibasaki T (2004) Both corticotropin-releasing factor receptor type 1 and type 2 are involved in stress-induced inhibition of food intake in rats. Psychopharmacology 176(1):30–38

    CAS  PubMed  Google Scholar 

  • Sherwin RS (2008) Bringing light to the dark side of insulin: a journey across the blood-brain barrier. Diabetes 57(9):2259–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T, Minokoshi Y (2017) Systemic glucoregulation by glucose-sensing neurons in the ventromedial hypothalamic nucleus (VMH). J Clin Endocrinol Metab 1(5):449–459

    CAS  Google Scholar 

  • Shiuchi T, Haque MS, Okamoto S, Inoue T, Kageyama H, Lee S, Toda C, Suzuki A, Bachman ES, Kim YB, Sakurai T (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10(6):466–480

    CAS  PubMed  Google Scholar 

  • Siljee JE, Unmehopa UA, Kalsbeek A, Swaab DF, Fliers E, Alkemade A (2013) Melanocortin 4 receptor distribution in the human hypothalamus. Eur J Endocrinol 168(3):361–369

    CAS  PubMed  Google Scholar 

  • Simon V, Cota D (2017) Mechanisms in endocrinology: endocannabinoids and metabolism: past, present and future. Eur J Endocrinol 176(6):309–324

    Google Scholar 

  • Smith ML, Prall B, Nandar W, Cline MA (2008) β-melanocyte-stimulating hormone potently reduces appetite via the hypothalamus in chicks. J Neuroendocrinol 20(2):220–226

    CAS  PubMed  Google Scholar 

  • Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK (2016) Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab 5(8):669–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley BG, Urstadt KR, Charles JR, Kee T (2011) Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake. Physiol Behav 104(1):40–46

    CAS  PubMed  Google Scholar 

  • Stengel A, Taché YF (2014) CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci 8:52–62

    PubMed  PubMed Central  Google Scholar 

  • Sternson SM, Shepherd GM, Friedman JM (2005) Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8(10):1356–1363

    CAS  PubMed  Google Scholar 

  • Suyama S, Yada T (2018) New insight into GABAergic neurons in the hypothalamic feeding regulation. J Physiol Sci 68(6):717–722

    CAS  PubMed  Google Scholar 

  • Tabarean IV (2016) Histamine receptor signaling in energy homeostasis. Neuropharmacology 106:13–19

    CAS  PubMed  Google Scholar 

  • Takano S, Kanai S, Hosoya H, Ohta M, Uematsu H, Miyasaka K (2004) Orexin-A does not stimulate food intake in old rats. Am J Physiol Gastrointest Liver Physiol 287(6):1182–1187

    Google Scholar 

  • Tibiriça E (2010) The multiple functions of the endocannabinoid system: a focus on the regulation of food intake. Diabetol Metab Syndr 2(1):5

    PubMed  PubMed Central  Google Scholar 

  • Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. DMM 10(6):679–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toda C, Shiuchi T, Lee S, Yamato-Esaki M, Fujino Y, Suzuki A, Okamoto S, Minokoshi Y (2009) Distinct effects of leptin and a melanocortin receptor agonist injected into medial hypothalamic nuclei on glucose uptake in peripheral tissues. Diabetes 58(12):2757–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, Kramer MD, Yu J, Yang Z, Christiansen LM, Lee CE, Choi CS (2007) Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab 5(5):383–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrealba F, Riveros ME, Contreras M, Valdes JL (2012) Histamine and motivation Front Syst Neurosci 6:51

    CAS  PubMed  Google Scholar 

  • Turenius CI, Htut MM, Prodon DA, Ebersole PL, Ngo PT, Lara RN, Wilczynski JL, Stanley BG (2009) GABAA receptors in the lateral hypothalamus as mediators of satiety and body weight regulation. Brain Res 1262:16–24

  • Vanevski F, Xu B (2013) Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci 7:37

    PubMed  PubMed Central  Google Scholar 

  • Vergoni AV, Bertolini A (2000) Role of melanocortins in the central control of feeding. Eur J Pharmacol 405(1–3):25–32

    CAS  PubMed  Google Scholar 

  • Vogt MC, Brüning JC (2013) CNS insulin signaling in the control of energy homeostasis and glucose metabolism–from embryo to old age. Trends Endrocrinol Metab 24(2):76–84

    CAS  Google Scholar 

  • Vucetic Z, Reyes TM (2010) Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wires Syst Biol Med 2(5):577–593

    CAS  Google Scholar 

  • Wallén-Mackenzie Å, Wootz H, Englund H (2010) Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? Ups J Med Sci 115(1):11–20.

  • Wang W, Andersson M, Iresjö BM, Lönnroth C, Lundholm K (2006) Effects of ghrelin on anorexia in tumor-bearing mice with eicosanoid-related cachexia. Int J Oncol 28(6):1393–1400

    CAS  PubMed  Google Scholar 

  • Wang L, Stengel A, Goebel M, Martinez V, Gourcerol G, Rivier J, Taché Y (2011) Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice. Peptides 32(1):51–59

    PubMed  Google Scholar 

  • Wang S, Khondowe P, Chen S, Yu J, Shu G, Zhu X, Wang L, Gao P, Xi Q, Zhang Y, Jiang Q (2012) Effects of" Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks. J Anim Sci Biotechnol 3(1):27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterson MJ, Horvath TL (2015) Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell metab 22(6):962–970

    CAS  PubMed  Google Scholar 

  • Williams G, Cai XJ, Elliott JC, Harrold JA (2004) Anabolic neuropeptides. Physiol Behav 81(2):211–222

    CAS  PubMed  Google Scholar 

  • Woods SC, D'Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93:37–50

    Google Scholar 

  • Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, Tecott LH, Reichardt LF (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6(7):736–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagi S, Sato T, Kangawa K, Nakazato M (2018) The homeostatic force of ghrelin. Cell metab 27(4):786–804

    CAS  PubMed  Google Scholar 

  • Yoshimatsu H (2006) The neuronal histamine H1 and pro-opiomelanocortin–melanocortin 4 receptors: independent regulation of food intake and energy expenditure. Peptides 27(2):326–332

    CAS  PubMed  Google Scholar 

  • Yousefvand S, Hamidi F (2019) Role of paraventricular nucleus in regulation of feeding behaviour and the design of intranuclear neuronal pathway communications. Int J Pept Res Ther 2019:1–2

    Google Scholar 

  • Yousefvand S, Hamidi F, Zendehdel M, Parham A (2018) Effects of insulin and somatostatin on water intake in neonatal chickens. I J Physiol Pharmacol 2(3):165–158

    Google Scholar 

  • Yousefvand S, Hamidi F, Zendehdel M, Parham A (2019) Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. Br Poult Sci 60(1):71–78

    CAS  PubMed  Google Scholar 

  • Yousefvand S, Hamidi F, Zendehdel M, Parham A (2020) Survey the effect of insulin on modulating feed intake via NPY receptors in 5-day-old chickens. Int J Pept Res Ther 26(1):467–476

    CAS  Google Scholar 

  • Zendehdel M, Hassanpour S (2014) Central regulation of food intake in mammals and birds: a review. Neurotransmitter 1:1–7

    Google Scholar 

  • Zendehdel M, Mokhtarpouriani K, Babapour V, Pourrahimi M, Hamidi F (2013a) The role of 5-HT2A and 5-HT2C receptors on harmalineinduced eating behavior in 24-h food-deprived broiler cockerels. Iran J Vet Res 14(2):94–99

    Google Scholar 

  • Zendehdel M, Mokhtarpouriani K, Hamidi F, Montazeri R (2013b) Intracerebroventricular injection of ghrelin produces hypophagia through central serotonergic mechanisms in chicken. Vet Res Commun 37(1):37–41

    PubMed  Google Scholar 

  • Zendehdel M, Hamidi F, Hassanpour S (2015) The effect of histaminergic system on nociceptin/orphanin FQ induced food intake in chicken. Int J Pept Res Ther 21(2):179–186

    CAS  Google Scholar 

  • Zendehdel M, Parvizi Z, Hassanpour S, Baghbanzadeh A, Hamidi F (2017) Interaction between nociceptin/orphanin FQ and adrenergic system on food intake in neonatal chicken. Int J Pept Res Ther 23(1):155–161

    CAS  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494(3):528–548

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank you to Ferdowsi University of Mashhad, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Hamidi.

Ethics declarations

Conflict of interest

The authors have not conflicts of interest.

Research Involving Human Participants and/or Animals

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefvand, S., Hamidi, F. The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake. Int J Pept Res Ther 27, 689–702 (2021). https://doi.org/10.1007/s10989-020-10120-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10120-9

Keywords

Navigation