Skip to main content
Log in

Active structural-acoustic control of laminated composite plates using vertically/obliquely reinforced 1–3 piezoelectric composite patch

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This article deals with the active structural-acoustic control of thin laminated composite plates using vertically reinforced 1–3 piezoelectric fiber-reinforced composite (PFRC) material for constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with ACLD patches and coupled with acoustic cavity to describe the coupled structural-acoustic behavior of the plates enclosing the cavity. Both in-plane and out of plane actuation of the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. The performance of PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arafa, M., Baz, A.: Dynamics of active piezoelectric damping composites. Composites B. 31, 225–264 (2000). doi:10.1016/S1359-8368(00)00020-2

    Article  Google Scholar 

  • Baily, T., Hubbard, J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985). doi:10.2514/3.20029

    Article  Google Scholar 

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126(2), 327–343 (1988). doi:10.1016/0022-460X(88)90245-3

    Article  Google Scholar 

  • Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. ASME. J. Vib. Acoust. 117B, 135–144 (1995). doi:10.1115/1.2838655

    Article  Google Scholar 

  • Chantalakhana, C., Stanway, R.: Active constrained layer damping of clamped–clamped plate vibrations. J. Sound Vib. 241(5), 755–777 (2001). doi:10.1006/jsvi.2000.3317

    Article  Google Scholar 

  • Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA. J. 25(10), 1373–1385 (1987). doi:10.2514/3.9792

    Article  Google Scholar 

  • Dong, S., Tong, L.: Vibration control of plates using discretely distributed piezoelectric quasi-modal actuators/sensors. AIAA. J. 39, 1766–1772 (2001)

    Article  Google Scholar 

  • Gu, Y., Clark, R.L., Fuller, C.R., Zander, A.C.: Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidyne fluoride (PVDF) modal sensors. ASME. J. Vib. Acoust. 116, 303–308 (1994). doi:10.1115/1.2930429

    Article  Google Scholar 

  • Hamden, A.M., Nayfeh, A.H.: Measure of modal controllability and observability for first and second order linear systems. J. Guid. Control Dyn. 12, 421–428 (1989). doi:10.2514/3.20424

    Article  Google Scholar 

  • Kinsler, L.E., Frey, A.R.: Fundamentals of Acoustics, 2nd edn. Willey, New York (1962)

    MATH  Google Scholar 

  • Park, C.H., Baz, A.: Vibration control of bending modes of plates using active constrained layer damping. J. Sound Vib. 227(4), 711–734 (1999). doi:10.1006/jsvi.1999.2391

    Article  Google Scholar 

  • Piezocomposites, Materials System Inc., 543 Great Road, Littleton, MA 01460

  • Ray, M.C., Balaji, R.: Active structural-acoustic control of laminated cylindrical panel using smart damping treatment. Int. J. Mech. Sci. 49, 1001–1017 (2007). doi:10.1016/j.ijmecsci.2007.02.001

    Article  Google Scholar 

  • Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plates. J. Sound Vib. 208, 391–406 (1997). doi:10.1006/jsvi.1997.1171

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Active control of laminated composite plates using piezoelectric fiber reinforced composite layer. Smart Mater. Struct. 13(1), 146–152 (2004a). doi:10.1088/0964-1726/13/1/016

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Finite element analysis of smart structures constraining piezoelectric fiber reinforced composite actuator. AIAA. J. 42(7), 1398–1405 (2004b). doi:10.2514/1.4030

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Performance of smart damping treatment using piezoelectric fiber reinforced composites. AIAA. J. 43(1), 184–193 (2005). doi:10.2514/1.7552

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15, 631–641 (2006). doi:10.1088/0964-1726/15/2/047

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: On the use of vertically reinforced 1–3 piezoelectric composites for hybrid damping of laminated composite plates. Mech. Adv. Mater. Struct. 14, 245–261 (2007). doi:10.1080/15376490600795683

    Article  Google Scholar 

  • Ray, M.C., Reddy, J.N.: Performance of piezoelectric fiber-reinforced composites for active structural-acoustic control of laminated composite plates. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 51(11), 1477–1490 (2004). doi:10.1109/TUFFC.2004.1367489

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, 2nd edn. CRC press, Boca Raton, FL (2004)

    Google Scholar 

  • Ro, J., Baz, A.: Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping. Smart Mater. Struct. 8, 292–300 (1999). doi:10.1088/0964-1726/8/3/302

    Article  Google Scholar 

  • Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8, 861–876 (2002)

    Article  MATH  Google Scholar 

  • Shields, W., Ro, J., Baz, A.: Control of sound radiation from a plate into an acoustic cavity using active piezoelectric-damping composites. Smart Mater. Struct. 7, 1–11 (1998). doi:10.1088/0964-1726/7/1/002

    Article  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 40, 40–47 (1991). doi:10.1109/58.67833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Appendix

Appendix

In Eqs. (6) and (7) matrices [Z 1 ], [Z 2 ], [Z 3 ], [Z 4 ], [Z 5 ], and [Z 6 ] are given by

$$ \begin{aligned} \left[ {{\mathbf{Z}}_{{\mathbf{1}}} } \right] & = \left[ {\begin{array}{*{20}c} {\left[ {\bar{{\mathbf{Z}}}_{{\mathbf{1}}} } \right]} & {\tilde{{\mathbf{o}}}} & {\tilde{{\mathbf{o}}}} \\ \end{array} } \right],\,\left[ {{\mathbf{Z}}_{{\mathbf{2}}} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{h/2}}} \right)\tilde{{\mathbf{I}}}} & {\left[ {\bar{{\mathbf{Z}}}_{{\mathbf{2}}} } \right]} & {\tilde{{\mathbf{o}}}} \\ \end{array} } \right],\left[ {{\mathbf{Z}}_{{\mathbf{3}}} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{h/2}}} \right)\tilde{{\mathbf{I}}}} & {{\mathbf{h}}_{\mathbf{v}} \tilde{{\mathbf{I}}}} & {\left[ {\bar{{\mathbf{Z}}}_{{\mathbf{3}}} } \right]} \\ \end{array} } \right], \\ \left[ {{\mathbf{Z}}_{{\mathbf{4}}} } \right] & = \left[ {\begin{array}{*{20}c} {\hat{{\mathbf{I}}}} & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {{\mathbf{z}}\hat{{\mathbf{I}}}} & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } \\ \end{array} } \right],\,\left[ {{\mathbf{Z}}_{{\mathbf{5}}} } \right] = \left[ {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\hat{{\mathbf{I}}}} & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\left( {{\mathbf{h/2}}} \right)\hat{{\mathbf{I}}}} & {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)\hat{{\mathbf{I}}}} & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } \\ \end{array} } \right], \\ \left[ {{\mathbf{Z}}_{{\mathbf{6}}} } \right] & = \left[ {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{o}}} } & {\hat{{\mathbf{I}}}} & {\left( {{\mathbf{h/2}}} \right)\hat{{\mathbf{I}}}} & {{\mathbf{h}}_{\mathbf{v}} \hat{{\mathbf{I}}}} & {\left( {{\mathbf{z}} - {\mathbf{h}}_{{\mathbf{3}}} /{\mathbf{2}}} \right)\hat{{\mathbf{I}}}} \\ \end{array} } \right] \\ \end{aligned} $$

in which

$$ \begin{gathered} \left[ {{\bar{\mathbf{Z}}}_{{\mathbf{1}}} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{z}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{z}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{z}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right] ,\,\left[ {{\bar{\mathbf{Z}}}_{{\mathbf{2}}} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right],\,\left[ {{\tilde{\mathbf{o}}}} \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} }}} & {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} }}} \\ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} }}} & {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} }}} \\ \end{array} } \right] ,\hfill \\ \left[ {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{o} }}} \right] = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right] ,\,\left[ {{\bar{\mathbf{Z}}}_{{\mathbf{3}}} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{z}} - {\mathbf{h}}_{{\mathbf{3}}} {\mathbf{/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h}}_{{\mathbf{3}}} {\mathbf{/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h}}_{{\mathbf{3}}} {\mathbf{/2}}} \right)} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right],\,\left[ {{\bar{\mathbf{Z}}}_{{\mathbf{1}}} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{z}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{z}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{z}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right], \hfill \\ \left[ {{\bar{\mathbf{Z}}}_{{\mathbf{2}}} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\left( {{\mathbf{z}} - {\mathbf{h/2}}} \right)} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right],\,\left[ {{\tilde{\mathbf{I}}}} \right] = \left[ {\begin{array}{*{20}c} {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right] ,\,\left[ {{\hat{\mathbf{I}}}} \right] = \left[ {\begin{array}{*{20}c} {\mathbf{1}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right], \hfill \\ \end{gathered} $$

The various submatrices B tbi , B tsi , B rbi , and B rsi appearing in (20) are given by

$$\begin{gathered} {\mathbf{B}}_{\mathbf{tbi}} = \left[{\begin{array}{*{20}c} {\frac{{{\varvec{\partial}}{\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} & {\mathbf{0}} \\ {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} & {\frac{{{\varvec{\partial}}{\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right] ,\,{\mathbf{B}}_{\mathbf{tsi}} = \left[ {\begin{array}{*{20}c}{\mathbf{0}} & {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} \\ {\mathbf{0}} & {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} \\ \end{array} } \right] ,\,{\mathbf{B}}_{{\mathbf{rbi}}} = \left[ {\begin{array}{*{20}c} {\bar{{\mathbf{B}}}_{{\mathbf{rbi}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } & {\bar{{\mathbf{B}}}_{{\mathbf{rbi}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} } & {\bar{{\mathbf{B}}}_{{\mathbf{rbi}}} } \\ \end{array} } \right], \hfill \\ \bar{{\mathbf{B}}}_{{\mathbf{rbi}}} = \left[ {\begin{array}{*{20}c} {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} & {\mathbf{0}} \\ {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{n}}_{{\mathbf{i}}} } \\ \end{array} } \right],\,{\mathbf{B}}_{\mathbf{rsi}} = \left[ {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{I}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{I}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{I}}} } \\ {\bar{{\mathbf{B}}}_{{\mathbf{rsi}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\bar{{\mathbf{B}}}_{\mathbf{rsi}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} } & {\bar{{\mathbf{B}}}_{{\mathbf{rsi}}} } \\ \end{array} } \right],\,\left[ {\bar{{\mathbf{B}}}_{{\mathbf{rsi}}} } \right] = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{x}}}} \\ {\mathbf{0}} & {\mathbf{0}} & {\frac{{{\varvec{\partial}} {\mathbf{n}}_{{\mathbf{i}}} }}{{\varvec{\partial}} {\mathbf{y}}}} \\ \end{array} } \right] {\text{ and }} \hfill \\ \left[ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{I}}} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{n}}_{{\mathbf{i}}} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{n}}_{{\mathbf{i}}} } & {\mathbf{0}} \\ \end{array} } \right] \hfill \\ \end{gathered} $$

where \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{{\mathbf{0}}} }} \) and \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\mathbf{0}}} }} \) are the (4 × 3) and (2 × 3) null matrices, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, M.C., Faye, A. Active structural-acoustic control of laminated composite plates using vertically/obliquely reinforced 1–3 piezoelectric composite patch. Int J Mech Mater Des 5, 123–141 (2009). https://doi.org/10.1007/s10999-008-9089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-008-9089-8

Keywords

Navigation