Skip to main content
Log in

Micromechanical analysis of fuzzy fiber reinforced composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A novel fuzzy fiber reinforced composite (FFRC) reinforced with zig-zag single-walled carbon nanotubes (CNTs) and carbon fibers is proposed. The distinct constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of carbon fibers. Analytical models based on the mechanics of materials approach and the Mori–Tanaka method are derived to estimate the effective elastic constants of this proposed FFRC. The values of the effective elastic properties of this composite are estimated with and without considering an interphase between the CNT and the polymer matrix. It has been found that the transverse effective properties of this composite are significantly improved due to the radial growing of CNTs on the surface of carbon fiber. The effective properties are also found to be sensitive to the CNT diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Batra, R.C., Sears, A.: Uniform radial expansion/contraction of carbon nanotubes and their transverse elastic moduli. Model. Simul. Mater. Sci. Eng. 15, 835–844 (2007)

    Article  Google Scholar 

  • Bevensite, Y., Dvorak, G.J.: Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids 40, 1295–1312 (1992)

    Article  MathSciNet  Google Scholar 

  • Cheng, H.C., Liu, Y.L., Hsu, Y.C., Chen, W.H.: Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)

    Article  Google Scholar 

  • Dunn, M.L., Ledbetter, H.: Elastic moduli of composites reinforced by multiphase particles. ASME J. Appl. Mech. 62, 1023–1028 (1995)

    Article  MATH  Google Scholar 

  • Esteva, M., Spanos, P.D.: Effective elastic properties of nanotube reinforced composites with slightly weakened interfaces. J. Mech. Mater. Struct. 4, 887–900 (2009)

    Article  Google Scholar 

  • Gao, X.L., Li, K.: A shear-lag model for carbon nanotube reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005)

    Article  MATH  Google Scholar 

  • Garcia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008)

    Article  Google Scholar 

  • Gou, J., Minaie, B., Wang, B., Liang, Z., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31, 225–236 (2004)

    Google Scholar 

  • Gupta, S.S., Batra, R.C.: Wall thickness and radial breathing modes of single-walled carbon nanotubes. ASME J. Appl. Mech. 75, 061010 (2008)

    Google Scholar 

  • Honjo, K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45, 865–872 (2007)

    Article  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • Jiang, Y.L., Martin, L.D.: Anisotropic coupled-field inclusion and inhomogeneity problems. Philos. Mag. A 77(5), 1341–1350 (1998)

    Google Scholar 

  • Jiang, B., Liu, C., Zhang, C., Liang, R., Wang, B.: Maximum nanotube volume fraction and its effect on overall elastic properties of nanotube-reinforced composites. Composites B 40, 212–217 (2009)

    Article  Google Scholar 

  • Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  • Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  • Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008)

    Article  Google Scholar 

  • Meguid, S.A., Zhu, Z.H.: A novel finite element for treating inhomogeneous solids. Int. J. Numer. Methods Eng. 38, 1579–1592 (1995)

    Article  MATH  Google Scholar 

  • Meguid, S.A., Wernik, J.M., Cheng, Z.Q.: Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int. J. Solids Struct. 47, 1723–1736 (2010)

    Article  MATH  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Article  Google Scholar 

  • Odegard, G.M., Clancy, T.C., Gates, T.S.: Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46, 553–562 (2005)

    Article  Google Scholar 

  • Qui, Y.P., Weng, G.J.: On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci. 28(11), 1121–1137 (1990)

    Article  Google Scholar 

  • Ray, M.C.: Concept for a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers. Smart Mater. Struct. 19, 035008 (2010)

    Google Scholar 

  • Ray, M.C., Batra, R.C.: Effective properties of carbon nanotube and piezoelectric fiber reinforced hybrid smart composite. ASME J. Appl. Mech. 76, 034–503 (2009)

    Article  Google Scholar 

  • Ray, M.C., Guzman de Villoria, R., Wardle, B.L.: Load transfer analysis in short carbon fibers with radially-aligned carbon nanotubes embedded in a polymer matrix. J. Adv. Mater. 41(4), 82–94 (2009)

    Google Scholar 

  • Rio, T.G., Poza, P., Rodriguez, J., Garcia, M.C., Hernandez, J.J., Ezquerra, T.A.: Influence of single-walled carbon nanotubes on the effective elastic constants of poly (ethylene terephthalate). Compos. Sci. Technol. 70, 284–290 (2010)

    Article  Google Scholar 

  • Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045–414 (2004)

    Google Scholar 

  • Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)

    Article  Google Scholar 

  • Song, Y.S., Youn, J.R.: Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47, 1741–1748 (2006)

    Article  Google Scholar 

  • Thostenson, E.T., Chow, T.W.: On the elastic properties of carbon nanotube based composites: modeling and characterization. J. Phys. D 36, 573–582 (2003)

    Article  Google Scholar 

  • Treacy, M.M.J., Ebbessen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  • Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotube/polyimide nanocomposites using multi-scale simulation. Composites B 41, 106–115 (2010)

    Article  Google Scholar 

  • Wernik, J.M., Meguid, S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217, 1–16 (2011)

    Article  Google Scholar 

  • Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  • Zhang, J., He, C.: A three-phase cylindrical shear-lag model for carbon nanotube composites. Acta Mech. 196, 33–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Q., Qian, W., Xiang, R., Yang, Z., Luo, G., Wang, Y., Wei, F.: In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Mater. Chem. Phys. 107, 317–321 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Appendix

Appendix

Equation 30 as shown in the results and discussion section can be derived as follows:

Referring to Fig. 6, the RVE of the FFRC can be considered as an equilateral triangle. Thus the volume (\( {\mathbf{V}}^{{{\mathbf{FFRC}}}} \)) of the RVE of the FFRC is given by

$$ {\mathbf{V}}^{{{\mathbf{FFRC}}}} = {\frac{\sqrt 3 }{4}}{\mathbf{D}}^{2} {\mathbf{L}} $$
(31)

where D = 2R. The volume (V f) of the carbon fiber is

$$ {\mathbf{V}}^{{\mathbf{f}}} = {\frac{{{\uppi}}}{8}}{\mathbf{d}}^{2} {\mathbf{L}} $$
(32)

where d = 2a. Thus the carbon fiber volume fraction (v f ) in the FFRC can be expressed as

$$ {\mathbf{v}}_{{\mathbf{f}}} = {\frac{{{\mathbf{V}}^{{\mathbf{f}}} }}{{{\mathbf{V}}^{{{\mathbf{FFRC}}}} }}} = {\frac{{{\uppi}}}{2\sqrt 3 }} {\frac{{{\mathbf{d}}^{2} }}{{{\mathbf{D}}^{2} }}} $$
(33)

Using A (3), the carbon fiber volume fraction (\( {\bar{\mathbf{v}}}_{\mathbf{f}} \)) in the CFF can be derived as

$$ {\bar{\mathbf{v}}}_{{\mathbf{f}}} = {\frac{{{\frac{{{\uppi}}}{8}}{\mathbf{d}}^{2} {\mathbf{L}}}}{{{\frac{{{\uppi}}}{8}}{\mathbf{D}}^{2} {\mathbf{L}}}}} = {\frac{2\sqrt 3 }{{{\uppi}}}}{\mathbf{v}}_{{\mathbf{f}}} $$
(34)

The maximum number \( \left( {{\mathbf{N}}_{{{\mathbf{CNT}}}} } \right)_{ \max } \) of radially grown aligned CNTs on the surface of the carbon fiber is given by

$$ \left( {{\mathbf{N}}_{{{\mathbf{CNT}}}} } \right)_{ \max } = {\frac{{{{\uppi}}{\mathbf{dL}}}}{{2\left( {{\mathbf{d}}_{{\mathbf{n}}} + 1.7} \right)^{2} }}} $$
(35)

Therefore the volume (V CNT) of the CNTs is

$$ {\mathbf{V}}^{{{\mathbf{CNT}}}} = {\frac{{{\uppi}}}{4}}{\mathbf{d}}_{{\mathbf{n}}}^{2} \left( {{\mathbf{R}} - {\mathbf{a}}} \right)\left( {{\mathbf{N}}_{{{\mathbf{CNT}}}} } \right)_{ \max } $$
(36)

Thus the maximum volume fraction \( \left( {{\mathbf{v}}_{{{\mathbf{CNT}}}} } \right)_{ \max } \) of the CNT with respect to the volume of the FFRC can be determined as

$$ \left( {{\mathbf{v}}_{{{\mathbf{CNT}}}} } \right)_{ \max } = {\frac{{{\mathbf{V}}^{{{\mathbf{CNT}}}} }}{{{\mathbf{V}}^{{{\mathbf{FFRC}}}} }}} = {\frac{{{{\uppi}}{\mathbf{d}}_{{\mathbf{n}}}^{2} }}{{2\left( {{\mathbf{d}}_{{\mathbf{n}}} + 1.7} \right)^{2} }}}\left( {\sqrt {{\frac{{{{\uppi}}{\mathbf{v}}_{{\mathbf{f}}} }}{2\sqrt 3 }}} - {\mathbf{v}}_{{\mathbf{f}}} } \right) $$
(37)

Finally, the maximum volume fraction (max (v nt )) of the CNTs with respect to the volume of the PMNC and with respect to the volume of the CFF (max (\( {\bar{\mathbf{v}}}_{\mathbf{nt}} \))) can be determined in terms of max (v CNT ) as follows:

$$ ({\mathbf{v}}_{{{\mathbf{nt}}}} )_{ \max } = {\frac{{{\mathbf{V}}^{{{\mathbf{CNT}}}} }}{{{\mathbf{V}}^{{{\mathbf{PMNC}}}} }}} = {\frac{2\sqrt 3 }{{{\uppi}}}}{\frac{{\left( {{\mathbf{D}}^{2} } \right)}}{{\left( {{\mathbf{D}}^{2} - {\mathbf{d}}^{2} } \right)}}}\left( {{\mathbf{v}}_{{{\mathbf{CNT}}}} } \right)_{ \max } $$
(38)
$$ ({\bar{\mathbf{v}}}_{{{\mathbf{nt}}}} )_{ \max } = {\frac{{{\mathbf{V}}^{{{\mathbf{CNT}}}} }}{{{\mathbf{V}}^{{{\mathbf{CFF}}}} }}} = {\frac{2\sqrt 3 }{{{\uppi}}}}\left( {{\mathbf{v}}_{{{\mathbf{CNT}}}} } \right)_{ \max } $$
(39)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundalwal, S.I., Ray, M.C. Micromechanical analysis of fuzzy fiber reinforced composites. Int J Mech Mater Des 7, 149–166 (2011). https://doi.org/10.1007/s10999-011-9156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9156-4

Keywords

Navigation