Skip to main content
Log in

Effective elastic properties of auxetic microstructures: anisotropy and structural applications

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Materials presenting a negative Poisson’s ratio (auxetics) have drawn attention for the past two decades, especially in the field of lightweight composite structures and cellular media. Studies have shown that auxeticity may result in higher shear modulus, indentation toughness and acoustic damping. In this work, three auxetic periodic microstructures based on 2D geometries are considered for being used as sandwich-core materials. Elastic moduli are computed for each microstructure by using finite elements combined with periodic homogenization technique. Anisotropy of elastic properties is investigated in and out-of-plane. Comparison is made between auxetics and the classical honeycomb cell. A new 3D auxetic lattice is proposed for volumic applications. Cylindrical and spherical elastic indentation tests are simulated in order to conclude on the applicability of such materials to structures. Proof is made that under certain conditions, auxetics can be competitive with honeycomb cells in terms of indentation strength. Their relatively soft response in tension can be compensated, in some situations, by high shear moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. http://www.zset-software.com/.

References

  • Alderson, K.L., Pickles, A.P., Neale, P.J., Evans, K.E.: Auxetic polyethylene—the effect of a negative Poisson ratio on hardness.Acta Metall. Mater. 42(7), 2261 (1994)

    Article  Google Scholar 

  • Alderson, K.L., Fitzgerald, A., Evans, K.E.: The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci. 35(16), 4039 (2000)

    Article  Google Scholar 

  • Alderson, v., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W., Zied, K.: Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 70(7), 1042 (2010)

    Article  Google Scholar 

  • Almgren, R.F.: An isotropic three-dimensional structure with poisson’s ratio = −1. J. Elast. 15, 427 (1985)

    Article  Google Scholar 

  • Ashby, M.F., Bréchet, Y.: Designing hybrid materials. Acta Mater. 51, 5801 (2003)

    Article  Google Scholar 

  • Bunge, H.J.: Texture Analysis in Materials Science. Butterworths, London (1982)

    Google Scholar 

  • Caddock, B.D., Evans, K.E.: Microporous materials with negative poisson’s ratios: I. Microstructure and mechanical properties. J. Phys. D 22, 1877 (1989)

    Article  Google Scholar 

  • Chen, C.P., Lakes, R.S.: Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams. J. Eng. Mater. Technol. 118(3), 285 (1996)

    Article  Google Scholar 

  • Choi, J.B., Lakes, R.S.: International Journal of Fracture 80, 73 (1996)

    Article  Google Scholar 

  • Dirrenberger, J., Forest, S., Jeulin, D., Colin, C.: Homogenization of periodic auxetic materials. Procedia Eng. 10, 1847 (2011). doi:10.1016/j.proeng.2011.04.307

  • Dirrenberger, J., Forest, S., Jeulin, D.: Elastoplasticity of auxetic materials. Comput. Mater. Sci. (2012). doi:10.1016/j.commatsci.2012.03.036

  • Doyoyo, M., Hu, J.W.: Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J. Mech. Phys. Solids 54, 1479 (2006)

    Article  MATH  Google Scholar 

  • Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C.: Molecular network design. Nature 353, 124 (1991a)

    Article  Google Scholar 

  • Evans, K.E.: The design of doubly curved sandwich panels with honeycomb cores. Compos. Struct. 17(2), 95 (1991b)

    Article  Google Scholar 

  • Gaspar, N., Ren, X.J., Smith, C.W., Grima, J.N., Evans, K.E.: Novel honeycombs with auxetic behaviour. Acta Mater. 53, 2439 (2005)

    Article  Google Scholar 

  • Huang, X., Blackburn, S.: Developing a new processing route to manufacture honeycomb ceramics with negative Poisson’s ratio. Key Eng. Mater. 206-213, 201 (2002)

    Article  Google Scholar 

  • Jean, A., Engelmayr, G.C.: Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering. J. Biomech. 43, 3035 (2010)

    Article  Google Scholar 

  • Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647 (2003)

    Article  MATH  Google Scholar 

  • Lakes, R.S.: Foam structures with a negative poisson’s ratio. Science 235, 1038 (1987)

    Article  Google Scholar 

  • Lakes, R.S.: Deformation mechanisms in negative poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287 (1991)

    Article  Google Scholar 

  • Milton, G.W.: Composite materials with poisson’s ratios close to −1. J. Mech. Phys. Solids 40(5), 1105 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Lakes, R.S.: Materials with structural hierarchy. Nature 361, 511 (1993)

    Article  Google Scholar 

  • Lipsett, A.W., Beltzer, A.I.: Reexamination of dynamic problems of elasticity for negative Poisson’s ratio. J. Acoust. Soc. Am. 84(6), 2179 (1988)

    Article  Google Scholar 

  • Madi, K., Forest, S., Cordier, P., Boussuge, M.: Numerical study of creep in two-phase aggregates with a large rheology contrast: implications for the lower mantle. Earth Planet. Sci. Lett. 237(1-2), 223 (2005). doi:10.1016/j.epsl.2005.06.027

    Article  Google Scholar 

  • Mitschke, H., Schwerdtfeger, J., Schury, F., Stingl, M., Körner, C., Singer, R.F., Robins, V., Mecke, K., Schröder-Turk, G.E.: Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23, 2669 (2011)

    Article  Google Scholar 

  • Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a poisson’s ratio of −1. Int. J. Mech. Sci. 39(3), 305 (1997)

    Article  MATH  Google Scholar 

  • Scarpa, F., Yates, J.R., Ciffo, L.G., Patsias S.: Dynamic crushing of auxetic open-cell polyurethane foam. J. Mech. Eng. Sci. 216(12), 1153–1156 (2002)

    Google Scholar 

  • Schwerdtfeger, J., Heinl, P., Singer, R.F., Körner, C.: Auxetic cellular structures through selective electron-beam melting. Phys. Status Solidi 247(2), 269 (2010)

    Article  Google Scholar 

  • Spadoni, A.: Application of chiral cellular materials for the design of innovative components. Ph.D. thesis, Georgia Institute of Technology. (2008)

  • Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F.: Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is part of the MANSART (Architectured sandwich materials) project ANR-08-MAPR-0026. Financial support of ANR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Dirrenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirrenberger, J., Forest, S. & Jeulin, D. Effective elastic properties of auxetic microstructures: anisotropy and structural applications. Int J Mech Mater Des 9, 21–33 (2013). https://doi.org/10.1007/s10999-012-9192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9192-8

Keywords

Navigation