Skip to main content
Log in

Smart control of nonlinear vibrations of doubly curved functionally graded laminated composite shells under a thermal environment using 1–3 piezoelectric composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper addresses the active control of geometrically nonlinear vibrations of doubly curved functionally graded (FG) laminated composite shells integrated with a patch of active constrained layer damping (ACLD) treatment under the thermal environment. Vertically/obliquely reinforced 1-3 piezoelectric composite (PZC) and active fiber composite (AFC) are used as the materials of the constraining layer of the ACLD treatment. Each layer of the substrate FG laminated composite shell is made of fiber-reinforced composite material in which the fibers are longitudinally aligned in the plane parallel to the top or bottom surface of the layer and the layer is assumed to be graded in the thickness direction by way of varying the fiber orientation angle across its thickness according to a power law. The novelty of the present work is that, unlike the traditional laminated composite shells, the FG laminated composite shells are constructed in such a way that the continuous variation of material properties and stresses across the thickness of the shell is achieved. The Golla-Hughes-McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. Based on the first-order shear deformation theory (FSDT), a finite element (FE) model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite shell under a thermal environment. Both symmetric and asymmetric FG laminated composite doubly curved shells are considered for presenting the numerical results. The analysis suggests that the ACLD patch significantly improves the damping characteristics of the doubly curved FG laminated composite shells for suppressing their geometrically nonlinear transient vibrations. It is found that the performance of the ACLD patch with its constraining layer being made of the AFC material is significantly higher than that of the ACLD patch with vertically/obliquely reinforced 1-3 PZC constraining layer. The effects of variation of piezoelectric fiber orientation in both the obliquely reinforced 1-3 PZC and the AFC constraining layers on the control authority of the ACLD patch have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bailey, T., Hubbard, J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guidance Control Dyn. 8, 605–611 (1985)

    Article  MATH  Google Scholar 

  • Baz, A.: Active constrained layer damping. 1996, U.S. patent 5, 485,053

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)

    Article  Google Scholar 

  • Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5, 135–144 (1996)

    Google Scholar 

  • Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8, 903–919 (1997)

    Article  Google Scholar 

  • Chantalakhana, C., Stanway, R.: Active constrained layer damping of clamped–clamped plate vibrations. J. Sound Vib. 241(5), 755–777 (2001)

    Article  Google Scholar 

  • Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  • Dong, X.J., Meng, G., Peng, J.C.: Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J. Sound Vib. 297, 680–693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Foda, M.A., Almajed, A.A., Eimadany, M.M.: Vibration suppression of composite laminated beams using distributed piezoelectric patches. Smart Mater. Struct. 19, 115018 (2010)

    Article  Google Scholar 

  • Gao, J.X., Shen, Y.P.: Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J. Sound Vib. 264, 911–928 (2003)

    Article  MATH  Google Scholar 

  • Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33(7), 1354–1357 (1995)

    Article  Google Scholar 

  • Ishihara, M., Noda, N.: Nonlinear dynamic behavior of a piezothermoelastic laminated plate with anisotropic material properties. Acta Mech. 166, 103–118 (2003)

    Article  MATH  Google Scholar 

  • Kar-Gupta, R., Venkatesh, T.A.: Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)

    Article  Google Scholar 

  • Kim, J., Varadan, V.V., Varadan, V.K., Bao, X.Q.: Finite element modeling of a smart cantilever plate and comparison with experiments. Smart Mater. Struct. 5(2), 165–170 (1996)

    Article  Google Scholar 

  • Koizumi, M.: Concept of FGM. Ceram. Trans. 34, 3–10 (1993)

    Google Scholar 

  • Lam, M.J., Inman, D.J., Saunders, W.R.: Hybrid damping models using the Golla–Hughes–McTavish method with internally balanced model reduction and output feedback. Smart Mater. Struct. 9, 362–371 (2000)

    Article  Google Scholar 

  • Lee, S.J., Reddy, J.N.: Nonlinear response of laminated composite plates under thermomechanical loading. Int. J. Nonlinear Mech. 40, 971–985 (2005)

    Article  MATH  Google Scholar 

  • Lim, Y.H., Gopinathan, S.V., Varadan, V.V., Varadan, V.K.: Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control. Smart Mater. Struct. 8(3), 324–337 (1999)

    Article  Google Scholar 

  • Mehrabian, A.R., Yousefi-Koma, A.: A novel technique for optimal placement of piezoelectric actuators on smart structures. J. Franklin Inst. 348, 12–23 (2011)

    Article  MATH  Google Scholar 

  • Moita, J.M.S., Soares, C.M.M., Soares, C.A.M.: Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators. Compos. Struct. 57, 253–261 (2002)

    Article  Google Scholar 

  • Mukherjee, A., Chaudhuri, A.S.: Nonlinear dynamic response of piezolaminated smart beams. Comput. Struct. 83, 1298–1304 (2005)

    Article  Google Scholar 

  • Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    Article  MATH  Google Scholar 

  • Ray, M.C.: Optimal control of laminated shells with piezoelectric sensor and actuator layers. AIAA J. 41, 1151–1157 (2003)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: Performance of vertically reinforced 1–3 piezoelectric composites for active damping of smart structures. Smart Mater. Struct. 15, 631–641 (2006)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: On the use of vertically reinforced 1–3 piezoelectric composites for hybrid damping of laminated composite plates. Mech. Adv. Mater. Struct. 14, 245–261 (2007)

    Article  Google Scholar 

  • Ray, M.C., Reddy, J.N.: Optimal control of thin circular cylindrical shells using active constrained layer damping treatment. Smart Mater. Struct. 13, 64–72 (2004)

    Article  Google Scholar 

  • Ray, M.C., Shivakumar, J.: Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite. Thin Walled Struct. 47, 178–189 (2009)

    Article  Google Scholar 

  • Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8, 861–876 (2002)

    Article  MATH  Google Scholar 

  • Sarangi, S.K., Ray, M.C.: Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1–3 piezoelectric composites. Smart Mater. Struct. 19, 075020 (2010)

    Article  Google Scholar 

  • Shin, D.K.: Large amplitude free vibration behavior of doubly curved shallow open shells with simply supported edges. Comput. Struct. 62(1), 35–49 (1997)

    Article  MATH  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelect. Freq. Control 31, 40–47 (1991)

    Article  Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38, 7409–7421 (2001)

    Article  MATH  Google Scholar 

  • Xu, S.X., Koko, T.S.: Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elements Anal. Des. 40(3), 241–262 (2004)

    Article  Google Scholar 

  • Young-Hun, Lim, Vasundara, V.V., Vijay, V.K.: Closed loop finite element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11, 89–97 (2002)

    Article  Google Scholar 

  • Zhang, H.Y., Shen, Y.P.: Vibration suppression of laminated plates with 1–3 piezoelectric fiber rein-forced composite layers equipped with interdigitated electrodes. Compos. Struct. 79, 220–228 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Kumar Sarangi.

Appendix

Appendix

The various matrices \( \left[ {{\mathbf{Z}}_{1} } \right] \), \( \left[ {{\mathbf{Z}}_{2} } \right] \), \( \left[ {{\mathbf{Z}}_{3} } \right] \), \( \left[ {{\mathbf{Z}}_{4} } \right] \), \( \left[ {{\mathbf{Z}}_{5} } \right] \) and \( \left[ {{\mathbf{Z}}_{6} } \right] \) appearing in Eq. (6) are given by

$$ \begin{aligned} \left[ {{\mathbf{Z}}_{1} } \right] & = \left[ {\begin{array}{*{20}c} {\left[ {{\bar{\mathbf{Z}}}_{1} } \right]} & {{\tilde{\mathbf{O}}}} & {{\tilde{\mathbf{O}}}} \\ \end{array} } \right],\left[ {{\mathbf{Z}}_{2} } \right] = \left[ {\begin{array}{*{20}c} {\frac{{\mathbf{h}}}{2}\left[ {\mathbf{I}} \right]} & {\left[ {{\bar{\mathbf{Z}}}_{2} } \right]} & {{\tilde{\mathbf{O}}}} \\ \end{array} } \right],\left[ {{\mathbf{Z}}_{3} } \right] = \left[ {\begin{array}{*{20}c} {\frac{{\mathbf{h}}}{2}\left[ {\mathbf{I}} \right]} & {{\mathbf{h}}_{{\mathbf{v}}} \left[ {\mathbf{I}} \right]} & {\left[ {{\bar{\mathbf{Z}}}_{3} } \right]} \\ \end{array} } \right], \\ \left[ {{\mathbf{Z}}_{4} } \right] & = \left[ {\begin{array}{*{20}c} {\left[ {{\bar{\mathbf{Z}}}_{4} } \right]} & {{\bar{\mathbf{O}}}} & {{\bar{\mathbf{O}}}} \\ \end{array} {\mathbf{z}}\begin{array}{*{20}c} { {\bar{\mathbf{I}}}} & {{\bar{\mathbf{O}}}} & {{\bar{\mathbf{O}}}} \\ \end{array} } \right],\left[ {{\mathbf{Z}}_{5} } \right] = \left[ { - \begin{array}{*{20}c} {({\mathbf{h}}/2){\mathbf{I}}_{1} } & {\left[ {{\bar{\mathbf{Z}}}_{5} } \right]} & {{\bar{\mathbf{O}}}} \\ \end{array} \frac{{\mathbf{h}}}{2}\begin{array}{*{20}c} { {\bar{\mathbf{I}}}} & {\left( {{\mathbf{z}} - \frac{{\mathbf{h}}}{2}} \right) {\bar{\mathbf{I}}}} & {{\bar{\mathbf{O}}}} \\ \end{array} } \right], \\ \left[ {{\mathbf{Z}}_{6} } \right] & = \left[ {\begin{array}{*{20}c} { - ({\mathbf{h}}/2){\mathbf{I}}_{1} } & { - {\mathbf{h}}_{{\mathbf{v}}} {\mathbf{I}}_{1} } & {\left[ {{\bar{\mathbf{Z}}}_{6} } \right]} \\ \end{array} \frac{{\mathbf{h}}}{2}\begin{array}{*{20}c} { {\bar{\mathbf{I}}}} & {{\mathbf{h}}_{{\mathbf{v}}} {\bar{\mathbf{I}}}} & {\left( {{\mathbf{z}} - {\mathbf{h}}_{{{\mathbf{N}} + 2}} } \right) {\bar{\mathbf{I}}}} \\ \end{array} } \right], \\ \end{aligned} $$

where \( \left[ {{\bar{\mathbf{Z}}}_{1} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{z\tilde{I}}}} & {{\mathbf{z}}\left[ {{\mathbf{I}}_{2} } \right]} \\ {{\mathbf{O}}_{1} } & 1 \\ \end{array} } \right],\left[ {{\bar{\mathbf{Z}}}_{2} } \right] = \left[ {\begin{array}{*{20}c} {\left( {{\mathbf{z}} - \frac{{\mathbf{h}}}{2}} \right){\tilde{\mathbf{I}}}} & {\left( {{\mathbf{z}} - \frac{{\mathbf{h}}}{2}} \right)\left[ {{\mathbf{I}}_{2} } \right]} \\ {{\mathbf{O}}_{1} } & 1 \\ \end{array} } \right], \),,

$$ \begin{aligned} \left[ {{\bar{\mathbf{Z}}}_{3} } \right] & = \left[ {\begin{array}{*{20}c} {({\mathbf{z}} - {\mathbf{h}}_{{{\mathbf{N}} + 2}} ){\tilde{\mathbf{I}}}} & {({\mathbf{z}} - {\mathbf{h}}_{{{\mathbf{N}} + 2}} )\left[ {{\mathbf{I}}_{2} } \right]} \\ {{\mathbf{O}}_{1} } & 1 \\ \end{array} } \right],\left[ {{\bar{\mathbf{Z}}}_{4} } \right] = \left[ {\begin{array}{*{20}c} {1 - ({\mathbf{z}}/{\mathbf{R}}_{1} )} & 0 \\ 0 & {1 - ({\mathbf{z}}/{\mathbf{R}}_{2} )} \\ \end{array} } \right], \\ \left[ {{\bar{\mathbf{Z}}}_{5} } \right] & = \left[ {\begin{array}{*{20}c} {1 - \left( {{\mathbf{z}} - \frac{{\mathbf{h}}}{2}} \right)/{\mathbf{R}}_{1} } & 0 \\ 0 & {1 - \left( {{\mathbf{z}} - \frac{{\mathbf{h}}}{2}} \right)/{\mathbf{R}}_{2} } \\ \end{array} } \right],\left[ {{\bar{\mathbf{Z}}}_{6} } \right] = \left[ {\begin{array}{*{20}c} {1 - ({\mathbf{z}} - {\mathbf{h}}_{{{\mathbf{N}} + 2}} )/{\mathbf{R}}_{1} } & 0 \\ 0 & {1 - ({\mathbf{z}} - {\mathbf{h}}_{{{\mathbf{N}} + 2}} )/{\mathbf{R}}_{2} } \\ \end{array} } \right], \\ \left[ {\mathbf{I}} \right] & = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{I}}}} & {\left[ {{\mathbf{I}}_{2} } \right]} \\ {{\mathbf{O}}_{1} } & 0 \\ \end{array} } \right],{\mathbf{I}}_{1} = \left[ {\begin{array}{*{20}c} {1/{\mathbf{R}}_{1} } & 0 \\ 0 & {1/{\mathbf{R}}_{2} } \\ \end{array} } \right] {\text{and}}\;\left[ {{\mathbf{I}}_{2} } \right] = \left[ {\begin{array}{*{20}c} {1/{\mathbf{R}}_{1} } & {1/{\mathbf{R}}_{2} } & 0 \\ \end{array} } \right]^{{\mathbf{T}}} \\ \end{aligned} $$

\( {\tilde{\mathbf{O}}} \) \( {\bar{\mathbf{O}}} \) and \( {\mathbf{O}}_{1} \) being 4 × 4, 2 × 2 and 1 × 3 null matrices respectively and \( {\tilde{\mathbf{I}}} \) and \( {\bar{\mathbf{I}}} \) are 3 × 3 and 2 × 2 identity matrices respectively. The various submatrices appearing in Eq. (23) are explained as follows:

$$ \begin{aligned} B_{tbi} & = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 & {\frac{1}{{{\mathbf{R}}_{1} }}} \\ 0 & {\frac{{\partial n_{i} }}{\partial y}} & {\frac{1}{{{\mathbf{R}}_{2} }}} \\ \end{array} } \\ {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial y}} & {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ 0 & 0 & 0 \\ \end{array} } \\ \end{array} } \right], B_{rbi} = \left[ {\begin{array}{*{20}c} {\bar{B}_{rbi} } & {\bar{O}_{1} } & {\bar{O}_{1} } \\ {\bar{O}_{1} } & {\bar{B}_{rbi} } & {\bar{O}_{1} } \\ {\bar{O}_{1} } & {\bar{O}_{1} } & {\bar{B}_{rbi} } \\ \end{array} } \right],\bar{B}_{rbi} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 & 0 \\ 0 & {\frac{{\partial n_{i} }}{\partial y}} & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial y}} & {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ 0 & 0 & 1 \\ \end{array} } \\ \end{array} } \right] , \\ B_{tsi} & = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{{\mathbf{R}}_{1} }}} & {\frac{{\partial n_{i} }}{\partial x}} \\ 0 & { - \frac{1}{{{\mathbf{R}}_{2} }}} & {\frac{{\partial n_{i} }}{\partial y}} \\ \end{array} } \right], B_{rsi} = \left[ {\begin{array}{*{20}c} {\bar{I}_{1} } \\ {\bar{B}_{rsi} } \\ \end{array} } \right],\bar{I}_{1} = \left[ {\begin{array}{*{20}c} {\hat{I}_{1} } & {\tilde{O}_{1} } & {\tilde{O}_{1} } \\ {\tilde{O}_{1} } & {\hat{I}_{1} } & {\tilde{O}_{1} } \\ {\tilde{O}_{1} } & {\tilde{O}_{1} } & {\hat{I}_{1} } \\ \end{array} } \right],\hat{I}_{1} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} } \right] \\ \bar{B}_{rsi} & = \left[ {\begin{array}{*{20}c} {\tilde{B}_{rsi} } & {\tilde{O}_{1} } & {\tilde{O}_{1} } \\ {\tilde{O}_{1} } & {\tilde{B}_{rsi} } & {\tilde{O}_{1} } \\ {\tilde{O}_{1} } & {\tilde{O}_{1} } & {\tilde{B}_{rsi} } \\ \end{array} } \right] , \tilde{B}_{rsi} = \left[ {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial n_{i} }}{\partial x}} \\ 0 & 0 & {\frac{{\partial n_{i} }}{\partial y}} \\ \end{array} } \right] B_{2i} = \tilde{B}_{rsi} \\ \end{aligned} $$

where \( \bar{O}_{1} \) and \( \tilde{O}_{1} \) are (4 × 3) and (2 × 3) null matrices, respectively. The various matrices appearing in the elemental stiffness matrices of Eq. (25) are given as

$$ \begin{aligned} &\left[{D_{tb}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{\bar{C}_{b}^{k}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{b}^{N + 2}} \right] dz, &\left[{D_{trb}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{\bar{C}_{b}^{k}} \right]\left[{Z_{1}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{b}^{N + 2}} \right]\left[{Z_{3}} \right] dz, \\ &\left[{D_{rrb}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{Z_{1}} \right]^{T} \left[{\bar{C}_{b}^{k}} \right]\left[{Z_{1}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{Z_{3}} \right]^{T} \left[{\bar{C}_{b}^{N + 2}} \right]\left[{Z_{3}} \right] dz, \\ &\left[{D_{tbt}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{\bar{C}_{b}^{k}} \right] \left\{{\alpha^{k}} \right\}\Updelta T dz , &\left[{D_{rbt}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{Z_{1}} \right] ^{T} \left[{\bar{C}_{b}^{k}} \right] \left\{{\alpha^{k}} \right\} \Updelta T dz \\ &\left[{D_{ts}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{\bar{C}_{s}^{k}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{s}^{N + 2}} \right] dz, &\left[{D_{trs}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{\bar{C}_{s}^{k}} \right]\left[{Z_{4}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{s}^{N + 2}} \right]\left[{Z_{6}} \right] dz, \\ &\left[{D_{rrs}} \right] = \mathop \sum \limits_{k = 1}^{N} \mathop \int \limits_{{h_{k}}}^{{h_{k + 1}}} \left[{Z_{4}} \right]^{T} \left[{\bar{C}_{s}^{k}} \right]\left[{Z_{4}} \right]dz + \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{Z_{6}} \right]^{T} \left[{\bar{C}_{s}^{N + 2}} \right]\left[{Z_{6}} \right] dz, \\ &\left[{D_{tbs}} \right]_{p} = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{bs}^{N + 2}} \right] dz , &\left[{D_{trbs}} \right]_{p} = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{\bar{C}_{bs}^{N + 2}} \right] \left[{Z_{6}} \right]dz , &\left[{D_{rtbs}} \right]_{p} = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{Z_{3}} \right]^{T} \left[{\bar{C}_{bs}^{N + 2}} \right] dz \\ &\left[{D_{rrbs}} \right]_{p} = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} \left[{Z_{3}} \right]^{T} \left[{\bar{C}_{bs}^{N + 2}} \right]\left[{Z_{6}} \right] dz \\ \left[{f_{tbp}} \right] = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} - \left\{{\bar{e}_{b}^{N + 2}} \right\}/h_{p} dz , &\left[{f_{rbp}} \right] = \mathop \int \limits_{{h_{N + 2}}}^{{h_{N + 3}}} - \left[{Z_{3}} \right]^{T} \left\{{\bar{e}_{b}^{N + 2}} \right\}/h_{p} dz \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarangi, S.K., Ray, M.C. Smart control of nonlinear vibrations of doubly curved functionally graded laminated composite shells under a thermal environment using 1–3 piezoelectric composites. Int J Mech Mater Des 9, 253–280 (2013). https://doi.org/10.1007/s10999-013-9217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-013-9217-y

Keywords

Navigation