Skip to main content
Log in

Free vibration analysis of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation using Ritz and Galerkin methods

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, free vibration analysis of fiber reinforced composite (FRC) conical shells resting on Pasternak-type elastic foundation is investigated. Two kinds of fiber distribution in the thickness direction, namely, uniformly distributed and functionally graded are considered. The material properties of FRC conical shells are estimated through a volume fraction power law. The equations of motion are derived through variational formulation. The governing equations are developed based on the classical shells theory and Sanders assumptions. Galerkin and Ritz methods are employed to solve the governing equations and determine natural frequencies of the conical shell. The conical shell assumed to be clamped at the both ends. Results are presented on the effect of fiber volume fraction, semi-vertex angle, thickness to radius ratio and elastic foundation stiffness parameters on the frequency characteristics of the conical shells. A comparative study between Ritz and Galerkin methods is carried out. Validity of the present study is confirmed by comparing the results with the data available in the open literature for a special case. A good agreement is observed between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  • Civalek, Ö.: Numerical analysis of free vibration of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach. J. Comput. Appl. Math. 205, 251–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Civalek, Ö.: Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Compos. B 45, 1001–1009 (2013)

    Article  Google Scholar 

  • Chang, C.H.: Membrane vibrations of conical shells. J. Sound Vib. 60, 335–343 (1978)

    Article  MATH  Google Scholar 

  • Goldberg, J.E., Bogdanoff, J.L., Marcus, L.: On the calculation of the axisymmetric modes and frequencies of conical shells. J. Acoust. Soc. Am. 32, 738–742 (1960)

    Article  MathSciNet  Google Scholar 

  • Hua, L.: Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions. Compos. Sci. Technol. 60, 2945–2955 (2000)

    Article  Google Scholar 

  • Irie, T., Yamada, G., Kaneko, Y.: Free vibration of a conical shell with variable thickness. J. Sound Vib. 82, 83–94 (1982)

    Article  MATH  Google Scholar 

  • Irie, T., Yamada, G., Kaneko, Y.: Natural frequencies of truncated conical shells. J. Sound Vib. 92, 447–453 (1984)

    Article  Google Scholar 

  • Khatri, K.N., Asnani, N.T.: Vibration and damping analysis of multilayered conical shells. Compos. Struct. 33, 143–157 (1995)

    Article  Google Scholar 

  • Leissa, A.W.: Vibration of Shells. Acoustic Society of America, New York (1993)

    Google Scholar 

  • Li, F. M., Kishimoto, K., Huang, W.H.: The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mech. Res. Commun. 36, 595–602 (2009)

  • Liew, K.M., Lim, M.K., Lim, C.W., Li, D.B., Zhang, Y.R.: Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells. J. Sound Vib. 180, 271–296 (1995)

    Article  Google Scholar 

  • Liew, K.M., Lim, C.W., Ong, L.S.: Vibration of pre-twisted cantilever shallow conical shells. Int. J. Solids Struct. 31, 2463–2476 (1994)

    Article  MATH  Google Scholar 

  • Liew, K.M., Lei, Z.X., Yu, J.L., Zhang, L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Methods Appl. Mech. Eng. 268, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lim, C.W., Liew, K.M., Kitipornchai, S.: Vibration of cantilevered laminated composite shallow conical shells. Int. J. Solids Struct. 35, 1695–1707 (1998)

    Article  MATH  Google Scholar 

  • Lim, C.W., Liew, K.M.: Vibratory behavior of shallow conical shells by a global Ritz formulation. Eng. Struct. 17, 63–70 (1995)

    Article  Google Scholar 

  • Lim, C.W., Liew, K.M.: Vibration of shallow conical shells with shear flexibility: a first-order theory. Int. J. Solids Struct. 33, 451–468 (1996)

    Article  MATH  Google Scholar 

  • Malekzadeh, P., Fiouz, A.R., Sobhrouyan, M.: Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment. Int. J. Press. Vessels Pip. 89, 210–221 (2012)

    Article  Google Scholar 

  • Pinto Correia, I.F., Mota Soares, C.M., Mota Soares, C.A., Herskovits, J.: Analysis of laminated conical shell structures using higher order models. Compos. Struct. 62, 383–390 (2003)

    Article  Google Scholar 

  • Reddy, J.N.: Theory and Analysis of Elastic Plates. Taylor & Francis, Philadelphia (1999)

    Google Scholar 

  • Reddy, J.N.: Mechanics of laminated Composite plates and shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  • Saunders, H., Wisniewski, E.J., Paslay, P.R.: Vibration of conical shells. J. Acoust. Soc. Am. 32, 765–772 (1960)

    Article  MathSciNet  Google Scholar 

  • Serpico, J.C.: Elastic stability of orthotropic conical and cylindrical shells subjected to axisymmetric loading conditions. AIAA J. 1, 128–137 (1963)

    Article  MATH  Google Scholar 

  • Shen, H.S.: A comparison of buckling and post buckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators. Compos. Struct. 91, 375–384 (2009)

    Article  Google Scholar 

  • Shen, H.S.: Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, Part I: theory and solutions. Compos. Struct. 94, 1305–1321 (2012)

    Article  Google Scholar 

  • Shu, C.: An efficient approach for free vibration analysis of conical shells. Int. J. Mech. Sci. 38, 935–949 (1996a)

    Article  MATH  Google Scholar 

  • Shu, C.: Free vibration analysis of composite laminated conical shells by generalized differential quadrature. J. Sound Vib. 194, 587–604 (1996b)

    Article  MATH  Google Scholar 

  • Siu, C.C., Bert, C.W.: Free vibration analysis of sandwich conical shells with free edges. J. Acoust. Soc. Am. 47, 943–945 (1970)

    Article  Google Scholar 

  • Sivadas, K.R., Ganesan, N.: Free vibration of cantilever conical shells with variable thickness. Comput. Struct. 36, 559–566 (1990)

    Article  Google Scholar 

  • Sivadas, K.R., Ganesan, N.: Vibration analysis of thick composite clamped conical shells of varying thickness. J. Sound Vib. 152, 27–37 (1992)

    Article  MATH  Google Scholar 

  • Sivadas, K.R., Ganesan, N.: Vibration analysis of laminated conical shells with variable thickness. J. Sound Vib. 148, 477–491 (1991)

    Article  Google Scholar 

  • Soedel, W.: Vibrations of Shells and Plates. Marcel Dekker, New York (1981)

    MATH  Google Scholar 

  • Sofiyev, A.H.: The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Compos. Struct. 89, 356–366 (2009)

    Article  Google Scholar 

  • Sofiyev, A.H., Kuruoglu, N.: Effect of a functionally graded interlayer on the non-linear stability of conical shells in elastic medium. Compos. Struct. 99, 296–308 (2013)

    Article  Google Scholar 

  • Sofiyev, A.H., Kuruoglu, N.: Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation. Compos. B 42, 1562–1570 (2011)

    Article  Google Scholar 

  • Vasiliev, V.V., Morozov, E.V.: Mechanics and Analysis of Composite Materials, 1st edn. Elsevier, Oxford (2001)

    Google Scholar 

  • Ventsel, E., Krauthammer, T.: Thin Plates and Shells Theory, Analysis, and Applications. Marcel Dekker, Basel (2001)

    Book  Google Scholar 

  • Yas, M.H., Sobhani Aragh, B.: Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation. Int. J. Eng. Sci. 218, 1881–1895 (2010)

    Article  Google Scholar 

  • Zhang, L.W., Zhu, P., Liew, K.M.: Thermal buckling of functionally grade plates using a local Kriging meshless method. Compos. Struct. 108, 472–492 (2014a)

    Article  Google Scholar 

  • Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Static and dynamic of carbon nanotube reinforced composite functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014b)

    Article  Google Scholar 

  • Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput. Methods Appl. Mech. Eng. 273, 1–18 (2014c)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jalilian Rad.

Appendix

Appendix

The detailed expressions of k ij are given as follows:

$$ \begin{aligned} k_{11} & = 2\pi \left( { - \frac{31}{90}\rho h\omega^{2} L^{10} \sin \alpha + \frac{1}{8}\left( { - A_{22} + 16A_{11} + 6\rho h\omega^{2} L^{2} } \right)L^{8} \sin \alpha + \frac{1}{7}\left( { - 50A_{11} L + \frac{{4A_{66} n^{2} L}}{{\sin^{2} \alpha }} - 4\rho h\omega^{2} L^{3} } \right.} \right. \\ & \left. {\quad +\,4A_{22} L} \right)L^{7} \sin \alpha + \frac{1}{6}\left( { - \frac{{6A_{66} n^{2} L^{2} }}{{\sin^{2} \alpha }} + 56A_{11} L^{2} - 6A_{22} L^{2} + L^{4} \rho h\omega^{2} } \right)L^{6} \sin \alpha + \frac{1}{5}\left( { - 26L^{3} A_{11} + 4L^{3} A_{22} } \right. \\ & \quad \left. {\left. { +\, \frac{{4A_{66} n^{2} L^{3} }}{{\sin^{2} \alpha }}} \right)L^{5} \sin \alpha + \frac{1}{4}\left( { - L^{4} A_{22} + 4L^{4} A_{11} - \frac{{A_{66} n^{2} L^{4} }}{{\sin^{2} \alpha }}} \right)L^{4} \sin \alpha } \right), \\ \end{aligned} $$
$$ \begin{aligned} k_{12} & = 2\pi \left( {\frac{1}{8}\left( { + \frac{{4A_{12} n}}{\sin \alpha } - \frac{{A_{22} n}}{\sin \alpha } + \frac{{3A_{66} n}}{\sin \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( {\frac{{4A_{22} nL}}{\sin \alpha } - \frac{{14A_{12} nL}}{\sin \alpha } - \frac{{10A_{66} nL}}{\sin \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( { - \frac{{6A_{22} nL^{2} }}{\sin \alpha }} \right.} \right. \\ & \quad \left. { + \frac{{12A_{66} nL^{2} }}{\sin \alpha } + \frac{{18A_{12} nL^{2} }}{\sin \alpha }} \right)L^{6} \sin \alpha + \frac{1}{5}\left( { - \frac{{10A_{12} nL^{3} }}{\sin \alpha } + \frac{{4A_{22} nL^{3} }}{\sin \alpha } - \frac{{6A_{66} nL^{3} }}{\sin \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( { + \frac{{2A_{12} nL^{4} }}{\sin \alpha } - \frac{{A_{22} nL^{4} }}{\sin \alpha }} \right. \\ & \quad \left. {\left. { + \frac{{A_{66} nL^{4} }}{\sin \alpha }} \right)L^{4} \sin \alpha } \right), \\ \end{aligned} $$
$$ \begin{aligned} k_{13} & = 2\pi \left( {\frac{1}{8}\left( {\frac{{4A_{12} }}{\tan \alpha } - \frac{{A_{22} }}{\tan \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( { - \frac{{14A_{12} L}}{\tan \alpha } + \frac{{4A_{22} a_{3} L}}{\tan \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( { - \frac{{6A_{22} L^{2} }}{\tan \alpha } + \frac{{18A_{12} L^{2} }}{\tan \alpha }} \right)L^{6} \sin \alpha } \right. \\ & \quad \left. { + \frac{1}{5}\left( {\frac{{4A_{22} L^{3} }}{\tan \alpha } - \frac{{10A_{12} L^{3} }}{\tan \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( { + \frac{{2A_{12} L^{4} }}{\tan \alpha } - \frac{{A_{22} L^{4} }}{\tan \alpha }} \right)L^{4} \sin \alpha } \right), \\ k_{21} & = 2\pi \left( {\frac{1}{8}\left( { - \frac{{A_{22} n}}{\sin \alpha } - \frac{{4A_{12} n}}{\sin \alpha } - \frac{{5A_{66} n}}{\sin \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( {\frac{{4A_{22} Ln}}{\sin \alpha } + \frac{{18A_{66} Ln}}{\sin \alpha } + \frac{{14A_{12} Ln}}{\sin \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( { - \frac{{6A_{22} L^{2} n}}{\sin \alpha }} \right.} \right. \\ & \quad \left. { - \frac{{18A_{12} nL^{2} }}{\sin \alpha } - \frac{{24A_{66} nL^{2} }}{\sin \alpha }} \right)L^{6} \sin \alpha + \frac{1}{5}\left( { + \frac{{4L^{3} A_{22} n}}{\sin \alpha } + \frac{{10L^{3} A_{12} n}}{\sin \alpha } - + \frac{{14L^{3} A_{66} n}}{\sin \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( {\frac{{2L^{4} A_{12} n}}{\sin \alpha }} \right. \\ & \quad \left. {\left. { - \frac{{L^{4} A_{22} n}}{\sin \alpha } - \frac{{3L^{4} A_{66} n}}{\sin \alpha }} \right)L^{3} \sin \alpha } \right), \\ k_{22} & = 2\pi \left( { - \frac{31}{90}\rho h\omega^{2} L^{10} \sin \alpha + \frac{1}{8}(6\rho h\omega^{2} L^{2} + 15A_{66} - \frac{{A_{22} n^{2} }}{{\sin^{2} \alpha }}} \right)L^{8} \sin \alpha + \frac{1}{7}\left( { - 4L^{3} \rho h\omega^{2} + \frac{{4A_{22} n^{2} L}}{{\sin^{2} \alpha }}} \right. \\ & \quad \left. { - 46A_{66} L} \right)L^{7} \sin \alpha + \frac{1}{6}\left( {50A_{66} L^{2} + L^{4} \rho h\omega^{2} - \frac{{6A_{22} n^{2} L^{2} }}{{\sin^{2} \alpha }} - \frac{{D_{22} n^{2} \cos \alpha }}{{\tan \alpha \sin^{3} \alpha }} + \frac{{8D_{66} \cos \alpha }}{\tan \alpha \sin \alpha }} \right) \\ & \quad \times L^{6} \sin \alpha + \frac{1}{5}\left( {\frac{{4L^{3} A_{22} n^{2} }}{{\sin^{2} \alpha }} + \frac{{4D_{22} Ln^{2} \cos \alpha }}{{\tan \alpha \sin^{3} \alpha }} - 22L^{3} A_{66} - \frac{{22D_{66} L\cos \alpha }}{\tan \alpha \sin \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( {3L^{4} A_{66} } \right. \\ & \quad \left. { - \frac{{L^{4} A_{22} n^{2} }}{{\sin^{2} \alpha }} + \frac{{20L^{2} D_{66} \cos \alpha }}{\sin \alpha \tan \alpha } - \frac{{6D_{22} L^{2} n^{2} \cos \alpha }}{{\tan \alpha \sin^{3} \alpha }}} \right)L^{3} \sin \alpha + \frac{1}{3}\left( {\frac{{4L^{3} D_{22} n^{2} \cos \alpha }}{{\tan \alpha \sin^{3} \alpha }} - \frac{{6L^{3} D_{66} \cos \alpha }}{\tan \alpha \sin \alpha }} \right) \\ & \quad \times L^{3} \sin \alpha + \frac{1}{2}\left. {\left( { - \frac{{L^{4} D_{22} n^{2} \cos \alpha }}{\sin \alpha \tan \alpha }} \right)L^{2} \sin \alpha )} \right), \\ \end{aligned} $$
$$ \begin{aligned} k_{23} & = 2\pi \left( {\frac{1}{8}\left( { - \frac{{A_{22} n}}{\sin \alpha \tan \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( { + \frac{{4A_{22} Ln}}{\sin \alpha \tan \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( {\frac{{24D_{66} n}}{\tan \alpha \sin \alpha } + \frac{{4D_{22} n}}{\tan \alpha \sin \alpha } + \frac{{12D_{12} n}}{\tan \alpha \sin \alpha }} \right.} \right. \\ & \left. {\quad - \frac{{D_{22} n^{3} }}{{\tan \alpha \sin^{3} \alpha }} - \frac{{6A_{22} nL^{2} }}{\sin \alpha \tan \alpha }} \right)L^{6} \sin \alpha + \frac{1}{5}\left( { - \frac{{72D_{66} Ln}}{\sin \alpha \tan \alpha } + \frac{{4L^{3} A_{22} n}}{\sin \alpha \tan \alpha } + \frac{{4D_{22} n^{3} L}}{{\tan \alpha \sin^{3} \alpha }} - \frac{{14D_{22} Ln}}{\tan \alpha \sin \alpha }} \right. \\ & \left. {\quad - \frac{{36D_{12} Ln}}{\tan \alpha \sin \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( {\frac{{18D_{22} nL^{2} }}{\tan \alpha \sin \alpha } - \frac{{6D_{22} L^{2} n^{3} }}{{\tan \alpha \sin^{3} \alpha }} + \frac{{38D_{12} L^{2} n}}{\tan \alpha \sin \alpha } - \frac{{L^{4} A_{22} n}}{\sin \alpha \tan \alpha } + \frac{{76D_{66} nL^{2} }}{\tan \alpha \sin \alpha }} \right) \\ & \quad \times\, L^{3} \sin \alpha + \frac{1}{3}\left( { - \frac{{10L^{3} D_{22} n}}{\tan \alpha \sin \alpha } - \frac{{16L^{3} D_{12} n}}{\sin \alpha \tan \alpha } - \frac{{32L^{3} D_{66} n}}{\tan \alpha \sin \alpha } + \frac{{4L^{3} D_{22} n^{3} }}{{\tan \alpha \sin^{3} \alpha }}} \right)L^{3} \sin \alpha + \frac{1}{2}\left( {\frac{{2L^{4} D_{12} n}}{\tan \alpha \sin \alpha }} \right. \\ & \left. {\left. {\quad + \frac{{2L^{4} D_{22} n}}{\tan \alpha \sin \alpha } + \frac{{4L^{4} D_{66} n}}{\tan \alpha \sin \alpha } - \frac{{L^{4} D_{22} n^{3} }}{{\tan \alpha \sin^{3} \alpha }}} \right)L^{2} \sin \alpha } \right), \\ k_{31} & = 2\pi \left( {\frac{1}{8}\left( { - \frac{{4A_{12} }}{\tan \alpha } - \frac{{A_{22} }}{\tan \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( {\frac{{14A_{12} L}}{\tan \alpha } + \frac{{4A_{22} L}}{\tan \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( { - \frac{{6A_{22} L^{2} }}{\tan \alpha } - \frac{{18A_{12} L^{2} }}{\tan \alpha }} \right)L^{6} \sin \alpha } \right. \\ & \quad \left. { + \frac{1}{5}\left( {\frac{{10L^{3} A_{12} }}{\tan \alpha } + \frac{{4A_{22} L^{3} }}{\tan \alpha }} \right)L^{5} \sin \alpha + \frac{1}{4}\left( { - \frac{{L^{4} A_{22} }}{\tan \alpha } - \frac{{2L^{4} A_{12} }}{\tan \alpha }} \right)L^{4} \sin \alpha } \right), \\ \end{aligned} $$
$$ \begin{aligned} k_{32} & = 2\pi \left( {\frac{1}{8}\left( { - \frac{{A_{22} n}}{\tan \alpha \sin \alpha }} \right)L^{8} \sin \alpha + \frac{1}{7}\left( {\frac{{4A_{22} Ln}}{\tan \alpha \sin \alpha }} \right)L^{7} \sin \alpha + \frac{1}{6}\left( {\frac{{12D_{66} n\cos \alpha }}{{\sin^{2} \alpha }} - \frac{{D_{22} n^{3} \cos \alpha }}{{\sin^{4} \alpha }} - \frac{{6A_{22} nL^{2} }}{\tan \alpha \sin \alpha }} \right.} \right. \\ & \left. {\quad - \frac{{2D_{22} n\cos \alpha }}{{\sin^{2} \alpha }} + \frac{{6D_{12} n\cos \alpha }}{{\sin^{2} \alpha }}} \right)\sin \alpha L^{6} + \frac{1}{5}\left( {\frac{{6D_{22} nL}}{{\sin^{2} \alpha }} - \frac{{32D_{66} nL\cos \alpha }}{{\sin^{2} \alpha }} + \frac{{4L^{3} A_{22} n}}{\tan \alpha \sin \alpha } + \frac{{4D_{22} Ln^{3} \cos \alpha }}{{\sin^{4} \alpha }}} \right. \\ & \quad \left. { - \frac{{16D_{12} nL\cos \alpha }}{{\sin^{2} \alpha }}} \right)\sin \alpha L^{5} + \frac{1}{4}\left( { - \frac{{6D_{22} n^{3} L^{2} \cos \alpha }}{{\sin^{4} \alpha }} - \frac{{6D_{22} L^{2} n\cos \alpha }}{{\sin^{2} \alpha }} - \frac{{L^{4} A_{22} n}}{\tan \alpha \sin \alpha } + \frac{{14D_{12} nL^{2} \cos \alpha }}{{\sin^{2} \alpha }}} \right. \\ & \quad \left. { + \frac{{28l^{2} D_{66} n\cos \alpha }}{{\sin^{2} \alpha }}} \right)\sin \alpha L^{4} + \frac{1}{3}\left( { - \frac{{4L^{3} D_{12} }}{{\sin^{2} \alpha }}n\cos \alpha - \frac{{8L^{3} D_{66} n\cos \alpha }}{{\sin^{2} \alpha }} + \frac{{2L^{3} D_{22} n\cos \alpha }}{{\sin^{2} \alpha }} + \frac{{4L^{3} D_{22} n^{3} \cos \alpha }}{{\sin^{4} \alpha }}} \right) \\ & \quad \left. {\sin (\alpha )L^{3} + \frac{1}{2}\left( { - \frac{{L^{4} D_{22} \cos \alpha n^{3} }}{{\sin^{4} \alpha }}} \right)\sin \alpha L^{2} } \right), \\ k_{33} & = 2\pi \left( { - \frac{31}{90}\rho h\omega^{2} \sin \alpha L^{10} + \frac{1}{8}\left( {6\rho h\omega^{2} L^{2} - \frac{{A_{22} }}{{\tan^{2} \alpha }}} \right)\sin \alpha L^{8} + \frac{1}{7}\left( { - 4L^{3} \rho h\omega^{2} + \frac{{4A_{22} L}}{{\tan^{2} \alpha }}} \right)L^{7} \sin \alpha } \right) \\ & \quad + \frac{1}{6}\left( {\frac{{2D_{22} n^{2} }}{{\sin^{2} \alpha }} - 72D_{11} + \frac{{36D_{66} n^{2} }}{{\sin^{2} \alpha }} + L^{4} \rho h\omega^{2} + \frac{{18D_{12} n^{2} }}{{\sin^{2} \alpha }} - \frac{{D_{22} n^{4} }}{{\sin^{4} \alpha }} + 8D_{22} a_{3} - \frac{{6A_{22} L^{2} }}{{\tan^{2} \alpha }}} \right)L^{6} \sin \alpha \\ & \quad + \frac{1}{5}\left( { + \frac{{4D_{22} n^{4} L}}{{\sin^{4} \alpha }} - 22D_{22} L + \frac{{4L^{3} A_{22} }}{{\tan^{2} \alpha }} - \frac{{52D_{12} n^{2} L}}{{\sin^{2} \alpha }} + 168D_{11} L - \frac{{104D_{66} Ln^{2} }}{{\sin^{2} \alpha }} - \frac{{8D_{22} Ln^{2} }}{{\sin^{2} \alpha }}} \right)L^{5} \sin \alpha \\ & \quad + \frac{1}{4}\left( {\frac{{12D_{22} L^{2} n^{2} }}{{\sin^{2} \alpha }} - \frac{{6D_{22} n^{4} L^{2} }}{{\sin^{4} \alpha }} + \frac{{104D_{66} }}{{\sin^{2} \alpha }}n^{2} L^{2} - 120D_{11} L^{2} - \frac{{L^{4} A_{22} }}{{\tan^{2} \alpha }} - + 20D_{22} L^{2} + \frac{{52D_{12} L^{2} n^{2} }}{{\sin^{2} \alpha }}} \right) \\ & \quad\times \sin \alpha L^{4} + \frac{1}{3}\left( { - 6L^{3} D_{22} + 24L^{3} D_{11} - \frac{{8L^{3} D_{22} n^{2} }}{{\sin^{2} \alpha }} + \frac{{4L^{3} D_{22} n^{4} }}{{\sin^{4} \alpha }} - \frac{{20L^{3} D_{12} n^{2} }}{{\sin^{2} \alpha }} - \frac{{40L^{3} D_{66} n^{2} }}{{\sin^{2} \alpha }}} \right)\sin \alpha L^{3} \\ & \quad \left. { + \frac{1}{2}\left( { - \frac{{L^{4} D_{22} n^{4} }}{{\sin^{4} \alpha }} + \frac{{2L^{4} D_{12} n^{2} }}{{\sin^{2} \alpha }} + \frac{{4L^{4} D_{66} n^{2} }}{{\sin^{2} \alpha }} + \frac{{2L^{4} D_{22} n^{2} }}{{\sin^{2} \alpha }}} \right)\sin \alpha L^{2} } \right) \\ \end{aligned} $$
(33)

The detailed expressions of S ij are given as follows:

$$ \begin{aligned} S_{11} & = \frac{1}{1260}\rho h\omega^{2} L^{10} \sin \alpha + \frac{1}{1680}L^{6} \left( { - 16A_{11} L^{2} - 6A_{22} L^{2} - 6A_{66} L^{2} n^{2} \cos^{2} \alpha + 12A_{22} L^{2} \cos^{2} \alpha + 32A_{11} L^{2} \cos^{2} \alpha } \right. \\ & \quad \left. { - 6A_{22} L^{2} \cos^{4} \alpha - 16A_{11} L^{2} \alpha \cos^{4} \alpha - 6A_{66} L^{2} n^{2} } \right)/\sin^{3} \alpha , \\ S_{12} & = \frac{1}{1680}L^{6} \left( {6A_{22} L^{2} n\sin \alpha \cos^{2} \alpha + 6A_{66} L^{2} n\sin \alpha \cos^{2} \alpha - 6A_{22} L^{2} n\sin \alpha - 6A_{66} L^{2} n\sin \alpha } \right)/\sin^{3} \alpha , \\ S_{13} & = + \frac{1}{1680}L^{6} \left( { - 6A_{22} L^{2} \sin \alpha \cos \alpha + 6A_{22} L^{2} \sin \alpha \cos^{3} \alpha } \right)/\sin^{3} \alpha , \\ S_{21} & = \frac{1}{1680}L^{6} \left( {6A_{22} L^{2} n\sin \alpha \cos^{2} \alpha + 6A_{66} L^{2} n\sin \alpha \cos^{2} \alpha - 6A_{22} L^{2} n\sin \alpha } \right)/\sin^{3} \alpha , \\ S_{22} & = \frac{1}{1260}\rho h\omega^{2} L^{10} \sin \alpha + \frac{1}{1680}L^{6} \left( { - 22A_{66} L^{2} - 112D_{66} \cos^{2} \alpha + 112D_{66} \cos^{4} \alpha + 6A_{22} L^{2} n^{2} \cos^{2} \alpha } \right. \\ & \quad \left. { - 56D_{22} L^{2} n^{2} \cos^{2} \alpha + 44A_{66} L^{2} \cos^{2} \alpha - 22A_{66} L^{2} \cos^{4} \alpha - 6A_{22} L^{2} n^{2} } \right)/\sin^{3} \alpha , \\ S_{23} & = + \frac{1}{1680}L^{6} \left( {56D_{22} n\cos \alpha - 112D_{66} n\cos \alpha - 56D_{12} n\cos \alpha - 56D_{22} n^{3} \cos \alpha - 56D_{22} n\sin^{3} \alpha } \right. \\ & \quad \left. { + 112D_{66} n\cos^{3} \alpha + 56D_{12} n\cos^{3} \alpha - 6A_{22} L^{2} n\cos \alpha + 6A_{22} L^{2} n\cos^{3} \alpha } \right)/\sin^{3} \alpha , \\ S_{31} & = + \frac{1}{1680}L^{6} \left( { - 6A_{22} L^{2} \sin \alpha \cos \alpha + 6A_{22} L^{2} \sin \alpha \cos^{3} \alpha } \right)/\sin^{3} \alpha , \\ \end{aligned} $$
$$ \begin{aligned} S_{32} & = + \frac{1}{1680}L^{6} \left( { - 56D_{12} n\cos \alpha + 56D_{22} n\cos \alpha - 112D_{66} n\cos \alpha - 56D_{22} n^{3} \cos \alpha + 112D_{66} n\cos^{3} \alpha } \right. \\ & \quad \left. { + 56D_{12} n\cos^{3} \alpha - 56D_{22} n\cos^{3} \alpha - 6A_{22} L^{2} n\cos \alpha + 6a_{2} A_{22} L^{2} n\cos^{3} \alpha } \right)/\sin^{3} \alpha , \\ S_{33} & = \frac{1}{1260}\rho h\omega^{2} \sin \alpha L^{10} + \frac{1}{1,680}L^{6} \left( { - 56D_{22} n^{4} - 1344D_{11} \cos^{2} \alpha - 224D_{22} \cos^{2} \alpha - 112D_{22} \cos^{4} \alpha } \right. \\ & \quad - 672D_{11} \cos \alpha^{4} + 112D_{22} n^{2} - 112D_{12} n^{2} + 224D_{66} n^{2} + 6A_{22} L^{2} \cos^{4} \alpha - 6A_{22} L^{2} \cos^{2} \alpha \\ & \quad \left. { + 224D_{66} n^{2} \cos \alpha^{2} - 112D_{22} \cos^{2} \alpha n^{2} + 112D_{12} \cos^{2} \alpha n^{2} - 112D_{22} - 672D_{11} } \right)/\sin^{3} \alpha . \\ \end{aligned} $$
(34)

The differential operators L i (i = 1, 2, 3) are given by

$$ \begin{aligned} L_{1} & = A_{12} \frac{{\partial^{2} u}}{{\partial x^{2} }} + A_{22} \left( { - \frac{1}{{x^{2} \sin \alpha }}\frac{\partial v}{\partial \theta } + \frac{1}{x\sin \alpha }\frac{{\partial^{2} v}}{\partial \theta \partial x} - \frac{u}{{x^{2} }} + \frac{\partial u}{\partial x}\frac{1}{x} - \frac{w}{{x^{2} \tan \alpha }} + \frac{\partial w}{\partial x}\frac{1}{x\tan \alpha }} \right) \\ & \quad + D_{12} \left( { - \frac{{\partial^{3} w}}{{\partial x^{3} }}} \right) + D_{22} \left( {\frac{1}{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{1}{{x\sin^{2} \alpha }}\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}} - \frac{\cos \alpha }{{x^{3} \sin^{2} \alpha }}\frac{\partial v}{\partial \theta } - \frac{\cos \alpha }{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{2} v}}{\partial \theta \partial x}} \right. \\ & \left. {\quad + \frac{1}{{x^{2} }}\frac{\partial w}{\partial x} - \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{1}{x}} \right) + A_{11} \left( {\frac{1}{x}\frac{\partial u}{\partial x}} \right) + A_{12} \left( {\frac{1}{{x^{2} \sin \alpha }}\frac{\partial v}{\partial \theta } + \frac{u}{{x^{2} }} + \frac{w}{{x^{2} \tan \alpha }}} \right) + D_{11} \left( { - \frac{1}{x}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) \\ & \quad + D_{12} \left( { - \frac{1}{{x^{3} \sin^{2} \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{\cos }{{x^{3} \sin^{2} \alpha }}\frac{\partial v}{\partial \theta } - \frac{1}{{x^{2} }}\frac{\partial w}{\partial x}} \right) - A_{12} \left( {\frac{1}{x}\frac{\partial u}{\partial x}} \right) - A_{22} \left( {\frac{1}{{x^{2} \sin \alpha }}\frac{\partial v}{\partial \theta } + \frac{u}{{x^{2} }}} \right. \\ & \quad \left. { + \frac{w}{{x^{2} \tan \alpha }}} \right) - D_{12} \left( { - \frac{1}{x}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) - D_{22} \left( { - \frac{1}{{x^{3} \sin^{2} \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{\cos \alpha }{{x^{3} \sin^{2} \alpha }}\frac{\partial v}{\partial \theta } - \frac{1}{{x^{2} }}\frac{\partial w}{\partial x}} \right) + \frac{1}{x\sin \alpha } \\ & \quad \left( {A_{66} \left( {\frac{{\partial^{2} v}}{\partial \theta \partial x} + \frac{1}{x\sin \alpha }\frac{{\partial^{2} u}}{{\partial \theta^{2} }} - \frac{1}{x}\frac{\partial v}{\partial \theta }} \right) + D_{66} \left( {\frac{2}{x\sin \alpha }\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}} + \frac{1}{x\tan \alpha }\frac{{\partial^{2} v}}{\partial \theta \partial x} + \frac{2}{{x^{2} \sin \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right.} \right. \\ & \quad \left. {\left. { - \frac{2}{{x^{2} \tan \alpha }}\frac{\partial v}{\partial \theta }} \right)} \right) \\ \end{aligned} $$
$$ \begin{gathered} L_{2} = \frac{1}{x\sin \alpha }(A_{12} \,\left( {\frac{{\partial^{2} u}}{\partial x\partial \theta }} \right) + A_{22} \left( {\frac{1}{x\sin \alpha }\frac{{\partial^{2} v}}{{\partial \theta^{2} }} + \frac{1}{x}\frac{\partial u}{\partial \theta } + \frac{1}{x\tan \alpha }\frac{\partial w}{\partial \theta }} \right) + D_{12} \left( { - \frac{{\partial^{3} w}}{{\partial \theta \partial x^{2} }}} \right) \\ \left. { + D_{22} \left( { - \frac{1}{{x^{2} \sin^{2} \alpha }}\,\,\frac{{\partial^{3} w}}{{\partial \theta^{3} }} + \,\,\frac{\cos \alpha }{{x^{2} \sin^{2} \alpha }}\frac{{\partial^{2} v}}{{\partial \theta^{2} }} - \,\,\frac{1}{x}\frac{{\partial^{2} w}}{\partial x\partial \theta }\,} \right)\,} \right) + A_{66} \,\,\left( {\,\frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{1}{{x^{2} \sin \alpha }}\frac{\partial u}{\partial \theta }} \right. \\ \left. { + \frac{1}{x\sin \alpha }\frac{{\partial^{2} u}}{\partial x\partial \theta } + \,\,\frac{v}{{x^{2} }}\,\,} \right) + D_{66} \left( {\,\,\frac{2}{{x^{2} \sin \alpha }}\frac{{\partial^{2} w}}{\partial x\partial \theta } - \,\,\frac{2}{x\sin \alpha }\frac{{\partial^{3} w}}{{\partial \theta \partial x^{2} }} - \,\,\frac{1}{{x^{2} \tan \alpha }}\frac{\partial v}{\partial x}} \right. \\ + \frac{1}{x\tan \alpha }\,\,\frac{{\partial^{2} v}}{{\partial x^{2} }}\,\, - \,\,\frac{4}{{x^{3} \sin \alpha }}\frac{\partial w}{\partial \theta }\,\, + \,\,\frac{2}{{x^{2} \sin \alpha }}\,\,\frac{{\partial^{2} w}}{\partial x\partial \theta }\,\, + \,\,\frac{4}{{x^{3} \tan \alpha }}v\,\, - \,\,\frac{1}{{x^{2} \tan \alpha }}\,\,\frac{\partial v}{\partial x} \\ \, + \frac{2}{x}\left( {A_{66} \left( {\frac{\partial v}{\partial x} + \frac{1}{x\sin \alpha }\frac{\partial u}{\partial \theta } - \frac{v}{x}} \right) + D_{66} \left( {\frac{2}{x\sin \alpha }\frac{{\partial^{2} w}}{\partial x\partial \theta } + \frac{1}{x\tan \alpha }\frac{\partial v}{\partial x} + \frac{2}{{x^{2} \sin \alpha }}\frac{\partial w}{\partial \theta }} \right.} \right. \\ \left. {\left. { - \frac{1}{{x^{2} \tan \alpha }}\,} \right)} \right) + \frac{1}{x\tan \alpha }\,\left( {\,D_{12} \left( {\frac{1}{x\sin \alpha }\frac{{\partial^{2} u}}{\partial x\partial \theta }} \right) + D_{22} \,\,\left( {\frac{1}{{x^{2} \sin^{2} \alpha }}\,\,\frac{{\partial^{2} v}}{{\partial \theta^{2} }}\,\, + \,\,\frac{1}{{x^{2} \sin \alpha }}\,\,\frac{\partial u}{\partial \theta }} \right.} \right. \\ \left. { + \frac{1}{{x^{2} \sin \alpha \tan \alpha }}\frac{\partial w}{\partial \theta }} \right) + B_{12} \left( {\frac{1}{x\sin \alpha }\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }}} \right) + B_{22} \left( {\frac{1}{{x^{2} \sin^{3} \alpha }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }} + \frac{\cos \alpha }{{x^{3} \sin^{3} \alpha }}\frac{{\partial^{2} v}}{{\partial \theta^{2} }}} \right. \\ \left. { - \frac{1}{{x^{2} \sin \alpha }}\frac{{\partial^{2} w}}{\partial x\partial \theta }} \right) + D_{66} \left( {\frac{{\partial^{2} v}}{{\partial x^{2} }} - \frac{1}{{x^{2} \sin \alpha }}\frac{\partial u}{\partial \theta } + \frac{1}{x\sin \alpha }\frac{{\partial^{2} u}}{\partial x\partial \theta } + \frac{v}{{x^{2} }}} \right) + B_{66} \left( {\frac{2}{{x^{2} \sin \alpha }}} \right. \\ \frac{{\partial^{2} w}}{\partial x\partial \theta } - \frac{2}{x\sin \alpha }\,\,\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} - \frac{1}{{x^{2} \tan \alpha }}\,\,\frac{\partial v}{\partial x} + \frac{1}{x\tan \alpha }\frac{{\partial^{2} v}}{{\partial x^{2} }}\,\, - \,\,\frac{4}{{x^{3} \sin \alpha }}\frac{\partial w}{\partial \theta } + \,\,\frac{2}{{x^{2} \sin \alpha }}\frac{{\partial^{2} w}}{\partial x\partial \theta }\,\, \\ \left. { + \frac{4}{{x^{3} \tan \alpha }}\frac{\partial v}{\partial x}} \right) + D_{66} \left( {\frac{2}{x}\frac{\partial v}{\partial x} + \frac{2}{{x^{2} \sin \alpha }}\frac{\partial u}{\partial \theta } - \frac{2}{{x^{2} }}v} \right) + B_{66} \left( { - \frac{4}{{x^{2} \sin \alpha }}\frac{{\partial^{2} w}}{\partial x\partial \theta } + \frac{2}{{x^{2} \tan \alpha }}} \right. \\ \quad \left. {\left. {\frac{\partial v}{\partial x} + \frac{4}{{x^{3} \sin \alpha }}\frac{\partial w}{\partial \theta } - \frac{4v}{{x^{3} \tan \alpha }}} \right)} \right) \\ \end{gathered} $$
$$ \begin{gathered} L_{3} = - \frac{1}{x\tan \alpha }\left( {A_{12} \left( {\frac{\partial u}{\partial x}} \right) + A_{22} \left( {\frac{1}{x\sin \alpha }\frac{\partial v}{\partial \theta } + \frac{u}{x} + \frac{1}{x\tan \alpha }w} \right) + D_{12} \left( { - \frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) + D_{22} \left( { - \frac{1}{{x^{2} \sin^{2} \alpha }}} \right.} \right. \\ \left. {\left. {\,\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{\cos \alpha }{{x^{2} \sin^{2} \alpha }}\frac{\partial v}{\partial \theta } - \frac{1}{x}\frac{\partial w}{\partial x}} \right)} \right) + D_{11} \left( { - \frac{1}{{x^{2} }}\frac{\partial u}{\partial x} + \frac{1}{x}\frac{{\partial^{2} u}}{{\partial x^{2} }}} \right) + D_{12} \left( { - \frac{2}{{x^{3} \sin \alpha }}\frac{\partial v}{\partial x} + \frac{1}{{x^{2} \sin \alpha }}\frac{\partial v}{\partial x}} \right. \\ \left. {\, - \frac{2u}{{x^{3} }}\frac{1}{{x^{2} }}\frac{\partial u}{\partial x} - \frac{2w}{{x^{3} \tan \alpha }} + \frac{1}{{x^{2} \tan \alpha }}\frac{\partial w}{\partial x}} \right) + B_{11} \left( {\frac{1}{{x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} - \frac{1}{x}\frac{{\partial^{3} w}}{{\partial x^{3} }}} \right) + B_{12} \left( {\frac{3}{{x^{4} \sin^{2} \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right. \\ \,\left. { - \frac{1}{{x^{3} \sin^{2} \alpha }}\,\,\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}}\,\, - \,\,\frac{3\cos \alpha }{{x^{4} \sin^{2} \alpha }}\frac{\partial v}{\partial \theta }\,\, + \,\,\frac{\cos \alpha }{{x^{3} \sin^{2} \alpha }}\frac{{\partial^{2} v}}{\partial x\partial \theta }\,\, + \,\,\frac{2}{{x^{3} }}\frac{\partial w}{\partial x}\,\, - \,\,\frac{1}{{x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }}\,} \right) + D_{11} \left( {\frac{{\partial^{3} u}}{{\partial x^{3} }}} \right) \\ \, + D_{12} \left( {\,\frac{2}{{x^{3} \sin \alpha }}\frac{\partial v}{\partial \theta }\,\, - \,\,\frac{1}{{x^{2} \sin \alpha }}\frac{{\partial^{2} v}}{\partial x\partial \theta }\,\, - \,\,\frac{1}{{x^{2} \sin \alpha }}\frac{{\partial^{2} v}}{\partial x\partial \theta }\,\, + \,\,\frac{1}{x\sin \alpha }\frac{{\partial^{3} v}}{{\partial x^{2} \partial \theta }} + \,\,\frac{2}{{x^{3} }}u - \frac{2}{{x^{2} }}\frac{\partial u}{\partial x}} \right. \\ \left. {\, + \,\,\frac{1}{x}\frac{{\partial^{2} u}}{{\partial x^{2} }} + \frac{2}{{x^{3} \tan \alpha }}w - \frac{2}{{x^{2} \tan \alpha }}\frac{\partial w}{\partial x} + \frac{1}{x\tan \alpha }\frac{{\partial^{2} w}}{{\partial x^{2} }}\,} \right)\,\, + B_{11} \left( {\, - \frac{{\partial^{4} w}}{{\partial x^{4} }}} \right) + B_{12} \left( {\frac{6}{{x^{4} \sin^{2} \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right.\, \\ \,\, + \,\,\frac{4}{{x^{3} \sin^{2} \alpha }}\,\,\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}\,\, - \,\,\frac{2}{{x^{2} \sin^{2} \alpha }}\,\,\frac{{\partial^{4} w}}{{\partial x^{2} \partial \theta^{2} }}\,\, + \,\,\frac{6\cos \alpha }{{x^{4} \sin^{2} \alpha }}\,\,\frac{\partial v}{\partial \theta }\,\, - \,\,\frac{4\cos \alpha }{{x^{3} \sin^{2} \alpha }}\,\,\frac{{\partial^{2} v}}{\partial x\partial \theta } + \frac{\cos \alpha }{{x^{2} \sin^{2} \alpha }} \\ \left. {\,\frac{{\partial^{3} v}}{{\partial x^{2} \partial \theta }} - \frac{2}{{x^{3} }}\frac{\partial w}{\partial x} + \frac{2}{{x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} - \frac{1}{x\sin \alpha }\frac{{\partial^{4} w}}{{\partial \theta^{2} \partial x^{2} }}} \right) + B_{22} \left( { - \frac{1}{{x^{2} \sin^{3} \alpha }}\frac{{\partial^{4} w}}{{\partial \theta^{4} }} + \frac{\cos \alpha }{{x^{3} \sin^{3} \alpha }}\frac{{\partial^{3} v}}{{\partial \theta^{3} }}} \right. \\ \left. {\, - \frac{1}{{x^{2} \sin \alpha }}\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}}} \right) + D_{66} \left( {\frac{{\partial^{3} v}}{{\partial \theta \partial x^{2} }} - \frac{1}{{x^{2} \sin \alpha }}\frac{{\partial^{2} u}}{{\partial \theta^{2} }} + \frac{1}{x\sin \alpha }\frac{{\partial^{3} u}}{{\partial \theta^{2} \partial x}} + \frac{1}{{x^{2} }}\frac{\partial v}{\partial \theta }} \right) + B_{66} \left( {\frac{2}{{x^{2} \sin \alpha }}} \right. \\ \,\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}} - \frac{2}{\sin \alpha }\frac{{\partial^{4} w}}{{\partial \theta^{2} \partial x^{2} }} - \frac{1}{x\tan \alpha }\frac{{\partial^{2} v}}{\partial \theta \partial x} + \frac{1}{x\tan \alpha }\frac{{\partial^{3} v}}{{\partial \theta \partial x^{2} }} - \frac{4}{{x^{3} \sin \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{2}{{x^{2} \sin \alpha }}\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}} \\ \left. {\, + \frac{4}{{x^{3} \tan \alpha }}\frac{\partial v}{\partial \theta }\frac{\partial v}{\partial x} + \frac{4v}{{x^{3} \tan \alpha }}\frac{{\partial^{2} v}}{\partial \theta \partial x}} \right) + D_{66} \left( {\frac{2}{x}\frac{{\partial^{2} v}}{\partial \theta \partial x} + \frac{2}{{x^{2} \sin \alpha }}\frac{{\partial^{2} u}}{{\partial \theta^{2} }} - \frac{2}{{x^{2} }}\frac{\partial v}{\partial \theta }} \right) + \\ \,B_{66} \left( { - \frac{4}{{x^{2} \sin \alpha }}\frac{{\partial^{3} w}}{{\partial \theta^{2} \partial x}} + \frac{2}{{x^{3} \tan \alpha }}\frac{{\partial^{2} v}}{\partial \theta \partial x} + \frac{4}{{x^{3} \sin \alpha }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{4}{{x^{3} \tan \alpha }}\frac{\partial v}{\partial \theta }} \right)\, \\ \end{gathered} $$
(35)

where

$$ \begin{aligned} A_{11} & = \int\limits_{ - h/2}^{h/2} {Q_{11} } dz,\quad A_{12} = \int\limits_{ - h/2}^{h/2} {Q_{12} } dz,\quad A_{22} = \int\limits_{ - h/2}^{h/2} {Q_{22} } dz,\quad A_{66} = \int\limits_{ - h/2}^{h/2} {Q_{66} } dz, \\ D_{11} & = \int\limits_{ - h/2}^{h/2} {zQ_{11} } dz,\quad D_{12} = \int\limits_{ - h/2}^{h/2} {zQ_{12} } dz,\quad D_{22} = \int\limits_{ - h/2}^{h/2} {zQ_{22} } dz,\quad D_{66} = \int\limits_{ - h/2}^{h/2} {zQ_{66} } dz, \\ B_{22} & = \int\limits_{ - h/2}^{h/2} {z^{2} Q_{22} } dz,\quad B_{12} = \int\limits_{ - h/2}^{h/2} {z^{2} Q_{12} } dz,\quad B_{11} = \int\limits_{ - h/2}^{h/2} {z^{2} Q_{11} } dz,\quad B_{66} = \int\limits_{ - h/2}^{h/2} {z^{2} Q_{66} } dz \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarouni, E., Jalilian Rad, M. & Tohidi, H. Free vibration analysis of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation using Ritz and Galerkin methods. Int J Mech Mater Des 10, 421–438 (2014). https://doi.org/10.1007/s10999-014-9254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9254-1

Keywords

Navigation