Skip to main content
Log in

The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The initial yield envelopes of aluminum (Al) nanocomposites reinforced with carbon nanotubes (CNTs) subjected to biaxial loading are predicted in the presence of thermal residual stress (TRS) arising from the manufacturing process. Micromechanical model based on the unit cell method is presented to generate the yielding surfaces. The formation of the interphase caused by the interfacial reaction between the CNT and Al matrix is taken into account in the analysis. The effects of several important parameters, i.e. the change of temperature, CNT volume fraction, interphase thickness and Al material properties on the yielding onset of the CNT/Al nanocomposite are explored extensively. The results clearly reveal that the initial yield surfaces of nanocomposite are dependent on the TRS. Also, the interphase has a significant influence on the yielding behavior of Al nanocomposite in the presence of TRS. The results demonstrate that the size of initial yield surfaces become minimum with considering the coupled effects of TRS and interphase. With increasing the temperature variation, interphase thickness, elastic modulus and coefficient of thermal expansion of Al matrix, the size of initial yield surfaces reduces. The present study is consequential for understanding the key role of TRS on the initial damage of CNT/Al nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghdam, M.M., Smith, D.J., Pavier, M.J.: Asymmetric behaviour of fibrous metal matrix composites. Mater. Sci. Technol. 17, 1153–1157 (2001)

    Article  Google Scholar 

  • Alfonso, I., Navarro, O., Vargas, J., Beltrán, A., Aguilar, C., González, G., Figueroa, I.A.: FEA evaluation of the Al4C3 formation effect on the Young’s modulus of carbon nanotube reinforced aluminum matrix composites. Compos. Struct. 127, 420–425 (2015)

    Article  Google Scholar 

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015a)

    Article  Google Scholar 

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015b)

    Article  Google Scholar 

  • Altenpohl, D.G.: Aluminum: technology, applications and environment: a profile of a modern metal aluminum from within, 6th edn. Wiley, Warrendale (1998)

    Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading. Compos. Part B 90, 512–522 (2016a)

    Article  Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115–116, 45–55 (2016b)

    Article  Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica (2016c). doi:10.1007/s11012-016-0512-1

    Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)

    Article  Google Scholar 

  • Aydogdu, M., Arda, M.: Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. Int. J. Mech. Mater. Des. 12, 71–84 (2016)

    Article  Google Scholar 

  • Bakshi, S.R., Agarwal, A.: An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49, 533–544 (2011)

    Article  Google Scholar 

  • Bakshi, S.R., Keshri, A.K., Singh, V., Seal, S., Agarwal, A.: Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J. Alloys Compd. 481, 207–213 (2009)

    Article  Google Scholar 

  • Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71, 1273–1279 (2011)

    Article  Google Scholar 

  • Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  • Cai, J., Li, G., Wang, C., Xie, Z.: Structure of graphene, and mechanical and bonding characteristics of single wall carbon nanotube by linear scaling quantum mechanical method. J. Mater. Sci. Technol. 26, 614–618 (2010)

    Article  Google Scholar 

  • Choi, B.K., Yoon, G.H., Lee, S.: Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Compos. Part B 91, 119–125 (2016)

    Article  Google Scholar 

  • Ci, L., Ryu, Z., Jin-Phillipp, N.Y., Ruhle, M.: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54, 5367–5375 (2006)

    Article  Google Scholar 

  • Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng., A 334, 173–178 (2002)

    Article  Google Scholar 

  • Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)

    Article  Google Scholar 

  • Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 4647 (2002)

    Article  Google Scholar 

  • Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  • He, C., Zhao, N.Q., Shi, C.S., Song, S.Z.: Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487, 258–262 (2009)

    Article  Google Scholar 

  • Herasati, S., Zhang, L.: A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites. Compos. Sci. Technol. 100, 136–142 (2014)

    Article  Google Scholar 

  • Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos. Part B 43, 2063–2071 (2012)

    Article  Google Scholar 

  • Junfeng, X., Lijing, X., Meguid, S.A., Siqin, P., Jie, Y., Yu, Z., Ruo, L.: An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes. Comput. Mater. Sci. 128, 359–372 (2017)

    Article  Google Scholar 

  • Kashyap, K.T., Koppad, P.G., Puneeth, K.B., Aniruddha Ram, H.R., Mallikarjuna, H.M.: Elastic modulus of multiwalled carbon nanotubes reinforced aluminium matrix nanocomposite—a theoretical approach. Comput. Mater. Sci. 50, 2493–2495 (2011)

    Article  Google Scholar 

  • Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015)

    Article  MathSciNet  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7, 149–166 (2011)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012a)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012b)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. Part B 57, 199–209 (2014)

    Article  Google Scholar 

  • Liu, Y.J., Chen, X.L.: Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35, 69–81 (2003)

    Article  Google Scholar 

  • Liu, Z.Y., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30, 649–655 (2014)

    Article  Google Scholar 

  • Long, X., Bai, Y., Algarni, M., Choi, Y., Chen, Q.: Study on the strengthening mechanisms of Cu/CNT nano-composites. Mater. Sci. Eng., A 645, 347–356 (2015)

    Article  Google Scholar 

  • Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater. Des. 31, 829–836 (2010)

    Article  Google Scholar 

  • Meguid, S.A., Al Jahwari, F.: Modeling the pullout test of nanoreinforced metallic matrices using molecular dynamics. Acta Mech. 225, 1267–1275 (2014)

    Article  MATH  Google Scholar 

  • Nafar Dastgerdi, J., Marquis, G., Salimi, M.: The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 86, 164–169 (2013)

    Article  Google Scholar 

  • Ngabonziza, Y., Li, J., Barry, C.F.: Electrical conductivity and mechanical properties of multiwalled carbon nanotube reinforced polypropylene nanocomposites. Acta Mech. 220, 289–298 (2011)

    Article  MATH  Google Scholar 

  • Nouri, N., Ziaei-Rad, S., Adibi, S., Karimzadeh, F.: Fabrication and mechanical property prediction of carbon nanotube reinforced aluminum nanocomposites. Mater. Des. 34, 1–14 (2012)

    Article  Google Scholar 

  • Pal, G., Kumar, S.: Modeling of carbon nanotubes and carbon nanotube–polymer composites. Prog. Aerosp. Sci. 80, 33–58 (2016)

    Article  Google Scholar 

  • Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)

    Article  Google Scholar 

  • Pantano, A., Cappello, F.: Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43, 263–270 (2008)

    Article  MATH  Google Scholar 

  • Park, J.G., Keum, D.H., Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690–698 (2015)

    Article  Google Scholar 

  • Ray, M.C.: A shear lag model of Piezoelectric composite reinforced with carbon nanotubes-coated Piezoelectric fibers. Int. J. Mech. Mater. Des. 6, 147–155 (2010)

    Article  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)

    Article  Google Scholar 

  • Sharma, M., Sharma, V.: Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int. J. Miner. Metall. Mater. 23, 222–233 (2016)

    Article  Google Scholar 

  • Shazed, M.A., Suraya, A.R., Rahmanian, S., Mohd Salleh, M.A.: Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite. Mater. Des. 54, 660–669 (2014)

    Article  Google Scholar 

  • Shindo, Y., Narita, F., Okura, S., Takeda, T., Fu, C.: Electromechanical bending response of PZT/CNT-based polymer laminates subjected to concentrated load. Int. J. Mech. Mater. Des. 10, 193–197 (2014)

    Article  Google Scholar 

  • Silvestre, N., Faria, B., Canongia, J.N.: Lopes. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Compos. Sci. Technol. 90, 16–24 (2014)

    Article  Google Scholar 

  • Song, H.Y., Zha, X.W.: Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites. Comput. Mater. Sci. 49, 899–903 (2010)

    Article  Google Scholar 

  • Starke Jr., E.A., Staley, J.T.: Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32, 131–172 (1996)

    Article  Google Scholar 

  • Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotube/polymer nanocomposites using multi-scale simulation. Compos. Part B 41, 106–115 (2010)

    Article  Google Scholar 

  • Wernik, J.M., Meguid, S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217, 1–16 (2011)

    Article  MATH  Google Scholar 

  • Wernik, J.M., Cornwell-Mott, B.J., Meguid, S.A.: Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int. J. Solids Struct. 49, 1852–1863 (2012)

    Article  Google Scholar 

  • Xu, Y., Zhang, D., Cai, J., Yuan, L., Zhang, W.: Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles. J. Mater. Sci. Technol. 28, 34–40 (2012)

    Article  Google Scholar 

  • Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2515 (1996)

    Article  Google Scholar 

  • Zarasvand, K.A., Golestanian, H.: Determination of nonlinear behavior of multi-walled carbon nanotube reinforced polymer: experimental, numerical, and micromechanical. Mater. Des. 109, 314–323 (2016)

    Article  Google Scholar 

  • Zhu, X., Zhao, Y.G., Wu, M., Wang, H.Y., Jiang, Q.C.: Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674(2016), 145–152 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J. & Kazempour, M.R. The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int J Mech Mater Des 14, 263–275 (2018). https://doi.org/10.1007/s10999-017-9368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9368-3

Keywords

Navigation