Skip to main content
Log in

Enhanced magnetoelectric effect in multiferroic composite beams due to flexoelectricity and transverse deformations

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper is concerned with the exploration of the role of transverse normal and shear deformations on enhancing the magnetoelectric (ME) coefficient of multiferroic bilayer composite beams composed of a piezoelectric layer and a piezomagnetic layer. Analytical models have been derived based on the displacement field which accounts for both the transverse normal and shear deformations, Timoshenko beam theory and Euler Bernoulli beam theory. The induced flexoelectricity in the piezoelectric layer due to axial strain gradient and transverse shear strain gradient has also been taken into consideration for estimating the ME coefficient. It has been found that the contribution of transverse normal strain in the piezoelectric layer for enhancing the ME coefficient is significantly larger than that due to axial strain, transverse shear strain and flexoelectricity. For the particular values of the thicknesses of the piezoelectric layer and the piezomagnetic layer, the ME coefficient remains invariant for both thick and thin multiferroic composite beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai, Y., Zhao, H., Chen, J., Sun, Y., Zhao, S.: Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceram. Int. 42, 10304–10309 (2016)

    Article  Google Scholar 

  • Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51(22), 16424–16427 (1995)

    Article  Google Scholar 

  • Chu, B., Salem, D.R.: Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 101, 103905 (2012)

    Article  Google Scholar 

  • Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014)

    Article  MathSciNet  Google Scholar 

  • Fang, F., Zhou, Y.Y., Xu, Y.T., Jing, W.Q., Yang, W.: Magnetoelectric coupling of multiferroic composites under combined magnetic and mechanical loadings. Smart Mater. Struct. 22, 075009 (2013)

    Article  Google Scholar 

  • Indenbom, V.L., Loginov, E.B., Osipov, M.A.: Flexoelectric effect and the structure of crystals. Kristalografija 26, 1157 (1981)

    Google Scholar 

  • Jayachandran, K.P., Guedes, J.M., Rodrigues, H.C.: A generic homogenization model for magnetoelectric multiferroics. J. Intell. Mater. Syst. Struct. 25, 1243–1255 (2014)

    Article  Google Scholar 

  • Jiang, X., Huang, W., Zhang, S.: Flexoelectric nano-generator: materials, structures and devices. Nano Energy 2, 1079–1092 (2013)

    Article  Google Scholar 

  • Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5(10), 2069–2070 (1964)

    Google Scholar 

  • Kuo, H.Y., Wang, Y.L.: Optimization of magnetoelectricity in multiferroic fibrous composites. Mech. Mater. 50, 88–99 (2012)

    Article  Google Scholar 

  • Lin, Y., Cai, N., Zhai, J., Liu, G., Nan, C.W.: Giant magnetoelectric effect in multiferroic laminated composites. Phys. Rev. B 72, 012405 (2005)

    Article  Google Scholar 

  • Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate ceramics. Appl. Phys. Lett. 86, 072905 (2005)

    Article  Google Scholar 

  • Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)

    Article  Google Scholar 

  • Ma, W., Eric Cross, L.: Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420–4422 (2001)

    Article  Google Scholar 

  • Ma, W., Eric Cross, L.: Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002)

    Article  Google Scholar 

  • Ma, W., Eric Cross, L.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)

    Article  Google Scholar 

  • Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  Google Scholar 

  • Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  • Mashkevich, V.S., Tolpygo, K.B.: Electrical, optical and elastic properties of diamond type crystals. I. Sov. Phys. JETP 5(3), 435–439 (1957)

    Google Scholar 

  • Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  Google Scholar 

  • Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)

    Article  Google Scholar 

  • Nan, C.W., Bichurin, M.I.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  • Nan, C.W., Lin, Y., Huang, J.H.: Magnetoelectricity of multiferroic composites. Ferroelectrics 280, 153–163 (2002)

    Article  Google Scholar 

  • Ortega, N., Kumar, A., Scott, J.F., Katiyar, R.S.: Multifunctional magnetoelectric materials for device applications. J. Phys.: Condens. Matter 27, 504002 (2015)

    Google Scholar 

  • Pan, E., Wang, X., Wang, R.: Enhancement of magnetoelectric effect in multiferroic fibrous nanocomposites via size-dependent material properties. Appl. Phys. Lett. 95, 181904 (2009)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631–641 (2006)

    Article  Google Scholar 

  • Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)

    Article  Google Scholar 

  • Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328–2350 (2007)

    Article  Google Scholar 

  • Srinivas, S., Li, J.Y.: The effective magnetoelectric coefficients of polycrystalline multiferroic composites. Acta Mater. 53, 4135–4142 (2005)

    Article  Google Scholar 

  • Srinivas, S., Li, J.Y., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006)

    Article  Google Scholar 

  • Wang, X., Pan, E.: Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Phys. Rev. B 76, 214107 (2007)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.: Size-dependent bending and vibration behavior of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. 46, 355502 (2013)

    Article  Google Scholar 

  • Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)

    Article  Google Scholar 

  • Zang, C., Zhang, L., Shen, X., Chen, W.: Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J. Appl. Phys. 119, 134102 (2016)

    Article  Google Scholar 

  • Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, M.C. Enhanced magnetoelectric effect in multiferroic composite beams due to flexoelectricity and transverse deformations. Int J Mech Mater Des 14, 461–472 (2018). https://doi.org/10.1007/s10999-017-9380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9380-7

Keywords

Navigation