Skip to main content
Log in

Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in an elastic medium is investigated by developing a nonlocal nanorod model with uncertainties. Considering limited experimental data, uncertain-but-bounded variables are employed to quantify the uncertain material properties in this paper. According to the nonlocal elasticity theory, the governing equations are derived by applying the Hamilton’s principle. An iterative algorithm based interval analysis method is presented to evaluate the lower and upper bounds of the wave dispersion curves. Simultaneously, the presented method is verified by comparing with Monte-Carlo simulation. Furthermore, combined effects of material uncertainties and various parameters such as nonlocal scale, elastic medium and lateral inertia on wave dispersion characteristics of nanorod are studied in detail. Numerical results not only make further understanding of wave propagation characteristics of nanostructures with uncertain material properties, but also provide significant guidance for the reliability and robust design of the next generation of nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015a)

    Article  Google Scholar 

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015b)

    Article  Google Scholar 

  • Aranda-Ruiz, J., Loya, J., Fernández-Sáez, J.: Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos. Struct. 94, 2990–3001 (2012)

    Article  Google Scholar 

  • Arda, M., Aydogdu, M.: Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct. 114, 80–91 (2014)

    Article  Google Scholar 

  • Attia, M.A., Mahmoud, F.F.: Analysis of viscoelastic Bernoulli-Euler nanobeams incorporating nonlocal and microstructure effects. Int. J. Mech. Mater. Des. (2016). doi:10.1007/s10999-016-9343-4

    Google Scholar 

  • Aydogdu, M.: Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 43, 34–40 (2012a)

    Article  Google Scholar 

  • Aydogdu, M.: Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012b)

    Article  MathSciNet  Google Scholar 

  • Aydogdu, M.: Longitudinal wave propagation in multiwalled carbon nanotubes. Compos. Struct. 107, 578–584 (2014)

    Article  Google Scholar 

  • Aydogdu, M., Arda, M.: Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. Int. J. Mech. Mater. Des. 12, 71–84 (2016)

    Article  Google Scholar 

  • Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comp. Mater. Sci. 114, 151–159 (2016)

    Article  Google Scholar 

  • Bahrami, A., Teimourian, A.: Study on the effect of small scale on the wave reflection in carbon nanotubes using nonlocal Timoshenko beam theory and wave propagation approach. Compos. Part B Eng. 91, 492–504 (2016)

    Article  Google Scholar 

  • Bao, W.X., Zhu, C.C., Cui, W.Z.: Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B 352, 156–163 (2004)

    Article  Google Scholar 

  • Barzykin, A.V., Tachiya, M.: Stochastic models of carrier dynamics in single-walled carbon nanotubes. Phys. Rev. B 72, 075425 (2005)

    Article  Google Scholar 

  • Ben-Haim, Y., Elishakoff, I.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  • Brischetto, S.: A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos. Part B Eng. 61, 222–228 (2014)

    Article  Google Scholar 

  • Chang, T.P.: Stochastic FEM on nonlinear vibration of fluid-loaded double-walled carbon nanotubes subjected to a moving load based on nonlocal elasticity theory. Compos. Part B Eng. 54, 391–399 (2013)

    Article  Google Scholar 

  • Chang, T.P.: Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field. Compos. Part B Eng. 114, 69–79 (2017)

    Article  Google Scholar 

  • Ebrahimi, F., Barati, M.R.: Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)

    Article  Google Scholar 

  • Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  • Enomoto, K., Kitakata, S., Yasuhara, T., Ohtake, N., Kuzumaki, T., Mitsuda, Y.: Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl. Phys. Lett. 88, 153115 (2006)

    Article  Google Scholar 

  • Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972a)

    Article  MATH  Google Scholar 

  • Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972b)

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  • Eringen, A.C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci. 1, 11–17 (1973)

    Google Scholar 

  • Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–355 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: Strain Gradient Plasticity. In: John, W.H., Theodore, Y.W. (eds.) Advances in Applied Mechanics, pp. 295–361. Elsevier, Amsterdam (1997)

    Google Scholar 

  • Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., Geim, A.K.: Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008)

    Article  Google Scholar 

  • Ghorbanpour Arani, A., Kolahchi, R., Mortazavi, S.A.: Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems. Int. J. Mech. Mater. Des. 10, 179–191 (2014)

    Article  Google Scholar 

  • Ghorbanpour Arani, A., Kolahchi, R., Mosayyebi, M., Jamali, M.: Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method. Int. J. Mech. Mater. Des. 12, 17–38 (2016)

    Article  Google Scholar 

  • Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., Yakobson, B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  MATH  Google Scholar 

  • Jiang, C., Lu, G.Y., Han, X., Liu, L.X.: A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater. Des. 8, 169–182 (2012)

    Article  Google Scholar 

  • Karličić, D., Kozić, P., Murmu, T., Adhikari, S.: Vibration insight of a nonlocal viscoelastic coupled multi-nanorod system. Eur. J. Mech. A Solid 54, 132–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Khorshidi, M.A., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016)

    Article  Google Scholar 

  • Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J.C.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)

    Article  Google Scholar 

  • Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998)

    Article  Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  • Li, X.F., Shen, Z.B., Lee, K.Y.: Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM-Z. Angew. Math. Mech. 97, 602–616 (2017)

    Article  MathSciNet  Google Scholar 

  • Liew, K.M., He, X.Q., Wong, C.H.: On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater. 52, 2521–2527 (2004)

    Article  Google Scholar 

  • Liu, H., Yang, J.L.: Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity. Phys. E Low Dimens. Syst. Nanostruct. 44, 1236–1240 (2012)

    Article  Google Scholar 

  • Liu, J., Sun, X., Meng, X., Li, K., Zeng, G., Wang, X.: A novel shape function approach of dynamic load identification for the structures with interval uncertainty. Int. J. Mech. Mater. Des. 12, 375–386 (2016)

    Article  Google Scholar 

  • Lusk, M.T., Carr, L.D.: Creation of graphene allotropes using patterned defects. Carbon 47, 2226–2232 (2009)

    Article  Google Scholar 

  • Lv, Z., Qiu, Z.P.: A direct probabilistic approach to solve state equations for nonlinear systems under random excitation. Acta Mech. Sinica P.R.C 32, 941–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Meo, M., Rossi, M.: Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos. Sci. Technol. 66, 1597–1605 (2006)

    Article  Google Scholar 

  • Narendar, S.: Terahertz wave propagation in uniform nanorods: a nonlocal continuum mechanics formulation including the effect of lateral inertia. Phys. E Low Dimens. Syst. Nanostruct. 43, 1015–1020 (2011)

    Article  Google Scholar 

  • Narendar, S.: Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nanorods. Finite Elem. Anal. Des. 62, 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  • Narendar, S., Gopalakrishnan, S.: Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Phys. E Low Dimens. Syst. Nanostruct. 42, 1601–1604 (2010)

    Article  Google Scholar 

  • Narendar, S., Gopalakrishnan, S.: Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Compos. Part B Eng. 42, 2013–2023 (2011)

    Article  Google Scholar 

  • Natsuki, T., Ni, Q.-Q., Endo, M.: Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46, 1570–1573 (2008)

    Article  Google Scholar 

  • Radebe, I.S., Adali, S.: Buckling and sensitivity analysis of nonlocal orthotropic nanoplates with uncertain material properties. Compos. Part B Eng. 56, 840–846 (2014)

    Article  Google Scholar 

  • Radić, N., Jeremić, D., Trifković, S., Milutinović, M.: Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory. Compos. Part B Eng. 61, 162–171 (2014)

    Article  Google Scholar 

  • Rahmati, A.H., Mohammadimehr, M.: Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM. Phys. B 440, 88–98 (2014)

    Article  Google Scholar 

  • Ruoff, R.S., Qian, D., Liu, W.K.: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys. 4, 993–1008 (2003)

    Article  Google Scholar 

  • Salvetat, J.-P., Briggs, G., Bonard, J.-M., Bacsa, R., Kulik, A., Stöckli, T., Burnham, N., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  • Scarpa, F., Adhikari, S.: Uncertainty modeling of carbon nanotube terahertz oscillators. J. Non-Cryst. 354, 4151–4156 (2008)

    Article  Google Scholar 

  • Shaat, M., Abdelkefi, A.: Buckling characteristics of nanocrystalline nano-beams. Int. J. Mech. Mater. Des. (2016). doi:10.1007/s10999-016-9361-2

    Google Scholar 

  • Shatalov, M., Marais, J., Fedotov, I., Tenkam, M.D.: Longitudinal vibration of isotropic solid rods: from classical to modern theories. InTech 2011

  • Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)

    Article  Google Scholar 

  • Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  • Togun, N., Bağdatli, S.M.: Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory. Compos. Part B Eng. 97, 255–262 (2016)

    Article  Google Scholar 

  • Wang, L.F., Hu, H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  • Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  • Wernik, J.M., Meguid, S.A.: Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl. Mech. Rev. 63, 050801 (2010)

    Article  Google Scholar 

  • Wu, X.F., Dzenis, Y.A.: Wave propagation in nanofibers. J. Appl. Phys. 100, 124318 (2006)

    Article  Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  • Yayli, M.O., Yanik, F., Kandemir, S.Y.: Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro Nano Lett. 10, 641–644 (2015)

    Article  Google Scholar 

  • Zhang, X., Jiao, K., Sharma, P., Yakobson, B.I.: An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. J. Mech. Phys. Solids 54, 2304–2329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Nature Science Foundation of China under Grant No.11602283. The core idea of the proposed method is originally formulated by Zheng Lv; the data analysis is accomplished by all authors. In addition, the authors also would like to thank the editor and reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Liu, H. & Li, Q. Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium. Int J Mech Mater Des 14, 375–392 (2018). https://doi.org/10.1007/s10999-017-9381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9381-6

Keywords

Navigation