Skip to main content
Log in

Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper presents the development of a strong form-based collocation method called the particle difference method (PDM), capable of predicting the spatiotemporal evolution of polycrystalline material solidification through coupling of multi-phase and temperature fields. Cross coupled phase field evolution and heat transfer equations are discretized via the PDM to obtain the interface kinematics of polycrystalline boundary during solidification. A distinct feature of the PDM is its ability to represent derivative operators via a moving least-square approximation of the Taylor expansion through point-wise computations at collocation points. The method discretizes directly the strong forms using the pre-computed derivative operators at each collocation point and elegantly overcomes the topological difficulty in modeling intricate moving interfaces. To verify the efficacy of the PDM, numerical results are compared with those obtained from the conventional finite difference method for uniform and irregular distributions of the collocation points. The scalability of the parallelized PDM is tested by measuring its efficiency with increasing the number of processors. We also provide a solidification simulation with two ellipsoidal inclusions to demonstrate the capability of the PDM in complex moving interface problems with high curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aluru, N.R.: A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Eng. 47, 1083–1121 (2000)

    Article  Google Scholar 

  • Amiri, F., Millán, D., Arroyo, M., Silani, M., Rabczuk, T.: Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput. Methods Appl. Mech. Eng. 312, 254–275 (2016)

    Article  MathSciNet  Google Scholar 

  • Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69, 102–109 (2014)

    Article  Google Scholar 

  • Anitescu, C., Jia, Y., Zhang, Y.J., Rabczuk, T.: An isogeometric collocation method using superconvergent points. Comput. Methods Appl. Mech. Eng. 284, 1073–1097 (2015)

    Article  MathSciNet  Google Scholar 

  • Areias, P., Msekh, M.A., Rabczuk, T.: Damage and fracture algorithm using the screened poisson equation and local remeshing. Eng. Fract. Mech. 158, 116–143 (2016b)

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., Msekh, M.A.: Phase-field analysis of finite-strain plates and shells including element subdivision. Comput. Methods Appl. Mech. Eng. 312, 322–350 (2016c)

    Article  MathSciNet  Google Scholar 

  • Areias, P., Rabczuk, T., de Sá, J.C.: A novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement. Comput. Mech. 58(6), 1003–1018 (2016a)

    Article  MathSciNet  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J. Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H., Zhang, H.: PETSc Web page, Smith, Stefano Zampini (2016)

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J. Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory (2016)

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin method. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  • Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  • Ceniceros, H.D., Nós, R.L., Roma, A.M.: Three-dimensional, fully adaptive simulations of phase-field fluid models. J. Comput. Phys. 229(17), 6135–6155 (2010)

    Article  MathSciNet  Google Scholar 

  • Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  • Du, Q., Zhang, J.: Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J. Comput. Math. 24(3), 265–280 (2006)

    MathSciNet  MATH  Google Scholar 

  • Du, Q., Zhang, J.: Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J. Sci. Comput. 30(3), 1634–1657 (2008)

    Article  MathSciNet  Google Scholar 

  • Eiken, J., Böttger, B., Steinbach, I.: Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys. Rev. E 73, 066122 (2006)

    Article  Google Scholar 

  • Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326343 (1993)

    Article  MathSciNet  Google Scholar 

  • Fu, Y., Michopoulos, J.G., Song, J.H.: Bridging the multi-phase field model with the molecular dynamics for the solidification of nano-crystals. J. Comput. Sci. 20, 187–197 (2017) (submitted)

  • Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(4950), 4333–4352 (2008)

    Article  MathSciNet  Google Scholar 

  • Gurtin, M.E., Fried, E.: Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72, 287308 (1994)

    MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Fried, E.: A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy. Physica D 91, 143181 (1996)

    MathSciNet  MATH  Google Scholar 

  • Huerta, A., Vidal, Y., Villon, P.: Pseudo-divergence-free element free galerkin method for incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 193, 11191136 (2004)

    MathSciNet  MATH  Google Scholar 

  • Jiang, W., Kim, T.-Y.: Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries. Comput. Methods Appl. Mech. Eng. 299, 144–160 (2016)

    Article  MathSciNet  Google Scholar 

  • Kaminsky, A.: BIG CPU, BIG DATA: Solving the World’s Toughest Computational Problems with Parallel Computing, chapter Strong Scaling. Rochester Institute of Technology, Rochester (2015)

    Google Scholar 

  • Karma, A.: Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 87, 115701 (2001)

    Article  Google Scholar 

  • Kim, D.W., Kim, Y.: Point collocation methods using the fast moving least-square reproducing kernel approximation. Int. J. Numer. Meth. Eng. 56(10), 1445–1464 (2003)

    Article  MathSciNet  Google Scholar 

  • Kim, D.W., Kim, H.K.: Point collocation method based on the FMLSRK approximation for electromagnetic field analysis. IEEE Trans. Magn. 40, 1029–1032 (2004)

    Article  Google Scholar 

  • Kim, S.G., Kim, D.I., Kim, W.T., Park, Y.B.: Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 74, 061605 (2006)

    Article  Google Scholar 

  • Kim, D.W., Liu, W.K., Yoon, Y.C., Belytschko, T., Lee, S.H.: Meshfree point collocation method with intrinsic enrichment for interface problems. Comput. Mech. 40, 1037–1052 (2007a)

    Article  MathSciNet  Google Scholar 

  • Kim, T.-Y., Park, E.-J., Shin, D.-W.: A C0-discontinuous galerkin method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 300, 225–244 (2016)

    Article  Google Scholar 

  • Kim, D.W., Yoon, Y.C., Liu, W.K., Belytschko, T.: Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J. Comput. Phys. 221, 370–394 (2007b)

    Article  MathSciNet  Google Scholar 

  • Krongauz, Y., Belytschko, T.: Consistent pseudo-derivatives in meshless methods. Comput. Methods Appl. Mech. Eng. 146, 371–386 (1997)

    Article  MathSciNet  Google Scholar 

  • Krongauz, Y., Belytschko, T.: A petrov-galerkin diffuse element method (PG DEM) and its comparison to EFG. Comput. Mech. 19, 327–333 (1997)

    Article  MathSciNet  Google Scholar 

  • Lan, C.W., Chang, Y.C.: Efficient adaptive phase field simulation of directional solidification of a binary alloy. J. Cryst. Growth 250(34), 525–537 (2003)

    Article  Google Scholar 

  • Lee, S.H., Yoon, Y.C.: Meshfree point collocation method for elasticity and crack problems. Int. J. Numer. Meth. Eng. 61(1), 22–48 (2004)

    Article  MathSciNet  Google Scholar 

  • Li, S., Liu, W.K.: Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput. Mech. 21, 28–47 (1998)

    Article  MathSciNet  Google Scholar 

  • Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity, Part I-formulation and theory. Int. J. Numer. Meth. Eng. 45, 251–288 (1999)

    Article  Google Scholar 

  • Li, S., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55, 1–34 (2002)

    Article  Google Scholar 

  • Liu, W.K., Jun, S., Zhang, Y.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  Google Scholar 

  • Lowengrub, J.S., Rätz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79, 031926 (2009)

    Article  MathSciNet  Google Scholar 

  • Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Calphad 32(2), 268–294 (2008)

    Article  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  • Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  • Onate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: Finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Meth. Eng. 39, 3839–3866 (1996a)

    Article  MathSciNet  Google Scholar 

  • Onate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L., Sacco, C.: A stabilized finite point method of analysis of fluid mechanics problems. Comput. Methods Appl. Mech. Eng. 139, 315–346 (1996b)

    Article  MathSciNet  Google Scholar 

  • Onate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79, 2151–2163 (2001)

    Article  Google Scholar 

  • Peco, C., Rosolen, A., Arroyo, M.: An adaptive meshfree method for phase-field models of biomembranes. Part II: a lagrangian approach for membranes in viscous fluids. J. Comput. Phys. 249, 320–336 (2013)

    Article  MathSciNet  Google Scholar 

  • Rosam, J., Jimack, P.K., Mullis, A.: A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification. J. Comput. Phys. 225(2), 1271–1287 (2007)

    Article  MathSciNet  Google Scholar 

  • Rosolen, A., Peco, C., Arroyo, M.: An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J. Comput. Phys. 249, 303–319 (2013)

    Article  MathSciNet  Google Scholar 

  • Steinbach, I.: Phase-field models in materials science. Modell. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)

    Article  Google Scholar 

  • Steinbach, I., Pezzolla, F.: A generalized field method for multiphase transformations using interface fields. Physica D 134(4), 385–393 (1999)

    Article  MathSciNet  Google Scholar 

  • Steinbach, I., Pezzolla, F., Nestler, B., Seelberg, M., Prieler, R., Schmitz, G., Rezende, J.: A phase field concept for multiphase systems. Physica D 94, 135–147 (1996)

    Article  Google Scholar 

  • Tan, Z., Lim, K.M., Khoo, B.C.: An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comput. Phys. 225(1), 1137–1158 (2007)

    Article  MathSciNet  Google Scholar 

  • Thornton, K., Ågren, J., Voorhees, P.W.: Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 51(19), 5675–5710 (2003)

    Article  Google Scholar 

  • Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic cahnhilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MathSciNet  Google Scholar 

  • Xu, Y., Wu, Y.G., Zhang, C.J., Zhu, L.G.: Precipitation and growth of inclusions in solidification process of steel. J. Iron. Steel Res. Int. 22(9), 804–811 (2015)

    Article  Google Scholar 

  • Yoon, Y.C., Lee, S.H., Belytschko, T.: Enriched meshfree collocation method with diffuse derivatives for elastic fracture. Comput. Math. Appl. 51, 1349–1366 (2006)

    Article  MathSciNet  Google Scholar 

  • Yoon, Y.C., Song, J.H.: Extended particle difference method for weak and strong discontinuity problems: part I. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput. Mech. 53(6), 1087–1103 (2014a)

    Article  MathSciNet  Google Scholar 

  • Yoon, Y.C., Song, J.H.: Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems. Comput. Mech. 53(6), 1105–1128 (2014b)

    Article  MathSciNet  Google Scholar 

  • Yoon, Y.C., Song, J.H.: Extended particle difference method for moving boundary problems. Comput. Mech. 54(3), 723–743 (2014c)

    Article  MathSciNet  Google Scholar 

  • Yu, H.S., Li, L.G.: Size distribution of inclusions in 12% cr stainless steel with a wide range of solidification cooling rates. Int. J. Miner. Metall. Mater. 22(11), 1157–1162 (2015)

    Article  Google Scholar 

  • Yue, P., Zhou, C., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219(1), 47–67 (2006)

    Article  MathSciNet  Google Scholar 

  • Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility cahn-hilliard equation: application of a semi-implicit fourier spectral method. Phys. Rev. E 60, 3564–3572 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The first and fifth authors acknowledge support by the Office of Naval Research (ONR) through the 2016 ONR Summer Faculty Research Fellowship and the Naval Research Laboratory’s core funding, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoon Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JH., Fu, Y., Kim, TY. et al. Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method. Int J Mech Mater Des 14, 491–509 (2018). https://doi.org/10.1007/s10999-017-9386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9386-1

Keywords

Navigation